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Abstract—As homes become smarter, automation and energy 

consumption have become focal points of this transition.  
Applications of artificial intelligence (AI) has been vital in 
transitioning many industries. In particular, Deep Neural 
Networks (DNNs) are employed to determine if meter current 
transforms (CTs) are installed correctly with a home.  With 
varying new energy technologies, diagnosing proper setup and 
configurations can be very convoluted, especially if these devices 
are complex.  Typically, an expert such as an electrician can 
determine if CTs are correctly installed.  Simple algorithms that 
look at load profiles with load and solar generated power cannot 
effectively determine if CTs are correct.  This research looks into 
determining if CTs within a home is correctly installed. Evaluated 
is a Convolutional-Recurrent Hybrid Neural Network (CNN-
RNN) baselined against a simple classification algorithm. 

Keywords—deep neural networks, load profile, meter current 
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I. INTRODUCTION 
Smart home is the culmination of artificial intelligence (AI), 

and automation. Applying this to energy usage in the home is 
gaining wider adoption as solar panels, battery storage and 
energy efficiency devices gain popularity. Homes are typically 
metered at the solar, load and grid connection points within the 
home. Smart devices then rely on the values read from these 
meters to make instant and future decisions based on current, 
historical readings. Simple connections can be easily diagnosed 
if metering or connections are problematic; however, as homes 
become more elaborate, these simple home setups can become 
complex. Applying simple algorithms therefore become non-
trivial and can lead to higher false positives and false negatives. 
Thus, Deep Neural Network (DNN) for classification is used. 

Generally, if a meter is connected to a subsystem of the home 
where other loads, coupled with generators are collocated, 
determining something simple as a meter current transformers’ 
(CTs) polarities are difficult without human intervention. Due to 
this, determining at scale whether a home is connected and 
metered properly can lead to uncertainty as these technologies 
scale.  Consequently, metering is a very important part of a 
functioning smart home. 

A. Importance of Metering 
 Metering is an import part of a home especially when solar 
generation and battery storage is involved [1]. It allows 
applications the ability to monitor, detect faults, forecast and 
predict energy usage.  It works by placing voltage and current 

sensors at specific parts in a home, giving applications the ability 
to connect to the meter and query for instantaneous power, 
current, voltage and frequency values and accumulated energy 
signals over time.  Applications then use this data for controls 
and monitoring based on a combination of the signals. If the 
power on a measured line exceeds a threshold, the application 
can trip the breaker of that line or; in a smart home sense, reduce 
the power consumption of a specific appliance. In a more 
complex setup, a solar system with a battery and multiple loads 
would require accurate values to determine how to react to 
energy consumption. For example, if solar is generating power 
and the home is not consuming any of it, the energy can be 
diverted to a home battery for future use. 

II. RELATED WORK 
CT polarity detection in a smart home is fairly novel. There 

are a handful of companies that are now venturing into home 
energy automation, thus research in this field is fairly new. 
Current solutions require human interaction. Related work 
detail how to run CT Polarity Tests. These usually include 
running manual onsite tests or after installation tests where 
metering is remotely monitored or where systems send alerts on 
conditions. One reason for this is the inverse of the scale 
problem. Companies can afford to have electricians run polarity 
tests, usually on large sites.  As small homes become smarter 
with solar and batteries, the problem of scale comes into play, 
leading to further research into this field. 

III. DATASETS AND FEATURES 

A. Datasets, Power and the Load Profile 
A Load Profile is an integral part of electrical engineering. 

Charting electrical demand over time is recorded into a load 
profile, which then allows analysis and insights into the 
particular load [2]. 

 
Figure 1: Solar Generation over a 24-hour period 



 
Figure 2: Solar Generation Flipped CT with Load 

Power is the rate at which energy is transferred. 
Appliances in a household consumes power to operate.  Solar 
Panels generate power and deliver it to appliances, stationary 
storage or back to the grid. A load profile is a graph of 
variation of the load’s power over time. Load profiles are 
generated from power/energy readings from a meter. 

Figure 1 shows an example load profile of a solar 
generation metered location, over a 24-hour period.  For solar 
generation, you can see a ramp in power generated, coinciding 
with sun rising, and a gradual decrease at the end, with spikes 
in power in the middle of the day; possibly correlated with 
cloud cover or bad weather. Figure 2 is a representation of an 
incorrectly installed CTs measuring 2 solar generation 
sources. Our dataset is comprised of multiple load profiles 
with various data points. 
 

B. Dataset Used 
Data was gathered through a proprietary system that housed 

historical anonymized metering data. The data contains 
timestamped values that are logged at various rates per signal 
and on a threshold change. The data originates from systems 
that have generators for this investigation. For simplicity, 
mixed load with solar generation and purely solar generation 
metering will be the main focus. 

C. Features 
Table 1 shows the input futures of our dataset. Presented are 

timestamped power values with intervals of 15 seconds at most 
unless a threshold is exceeded, then an immediate value would 
be recorded. 

TABLE I.  INPUT DATA 

Timestamp (milliseconds epoch) Power (Watts) 

1588975202105 2724.650024  

1588975217205 2729.199951  

1588975232215 2731.979980 

1588975247305 2078.089966  

1588975262305 2733.719971  
 

a. Sample input data of Figure 2 

IV. METHODS 

A. Data Pre-Processing 
Data may have more values logged at higher rates than 15 

second intervals due to on change threshold logging.  For this, 
load profiles are down sampled to 15-minute intervals at mean 
averaging. Data is also gathered in batches with the same start 
time.  All of the data will have the same duration of 24 hours. 
The data will then be split up into 12-hour durations. 

 

 
Figure 3: Down sample of Figure 1 

 

B. Labeling Data 
We have 2 labels: “correct polarity” (Figure 4) and 

“incorrect polarity” (Figure 5). 
 
 

 
Figure 4: Correct Polarity 

 

 
Figure 5: Incorrect Polarity 

 
Figure 6: Unknown Polarity 



C. Convolutional Recurrent Neural Network 
Recognizing from the input, the sequence and size along 

with translation invariance needs to be accommodated in the 
network chosen. Convolutional Recurrent Neural Networks 
(CRNNs) are a perfect fit for our application. Borrowing from 
speech recognition research [3], as the input data is similar to 
audio data, Long Short-Term Memory (LSTM) are employed 
as the RNN to learn long-term dependencies. CNN is used to 
reduce the input size going into the LSTM.  It also learns feature 
detectors that can be used in different parts of the input, which 
allows for parameter sharing and translational invariance.  
CNNs therefore, allow sparsity of connections, where the 
output of a CNN depends on a few inputs. 

V. EXPERIMENTS, RESULTS & DISCUSSION 
In this section we discuss our results of the top models we 

found and our process in getting to those models via 
hyperparameter tuning and data normalization.  We used binary 
cross entropy as our loss with accuracy as our metric. We 
divided our data into 3 partitions, train, dev and test with a split 
of 60%, 20% and 20%, respectively. 

A. Hyperparameters 
We chose accuracy as our main metric since it is suitable 

for binary classification tasks. Accuracy was chosen over recall 
because we try to maximize accuracy at the expense of getting 
false negatives.  We experimented with SGD optimization with 
learning rate of 0.01and Adam optimization with learning rate 
of 0.01. From experimental results, Adam performed better in 
converging faster that SGD. 

 
Table 2: Adam vs SGD 

 Accuracy 
Epoch Adam SGD 

1 0.6816 0.5791 
2 0.7057 0.6867 
3 0.8366 0.7073 
4 0.9371 0.6970 

 
Early on in the model hyperparameter tuning, we found that 

high batch size created high loss in our output. Using a batch 
size of 8 minimized that loss, and even though our final models 
could have used a large batch size, 8 gave great results. 

We chose epochs of 50 initially but found that our models 
with Adam optimization converged much quickly around 10.  
We stopped at 10 when loss was still decreasing, and validation 
loss and accuracy began to deteriorate. It was also chosen to 
prevent overfitting and to allow time to experiment with other 
models. 

B. Input Normalization, Batch Normilization & Dropout: 
During model creation and training, we found the output of 

our models to be drastically wild especially in exploding loss or 
accuracy not increasing.  We found that adding normalization 
of our input not only reduced overfitting, it also remedied our 
exploding loss and stagnant accuracy. 

We split our data into train, dev and test. When our test set 
did poorly compared to our train and dev, adding dropout not 

only helped with the exploding loss, it also helped with the test 
set performance. We found a dropout between our CNNs and 
GRUs helped. 

C. Experiments 

Experiment 1: 
For the first experiment we used 3 Conv1d with 16 filters 

and 5x5 kernel, each with batch normalization and ReLU 
activation.  They fed into a GRU with 512 units, dropout layer 
of 0.2, then into a dense layer with 64 units. The output went 
through a sigmoid activated dense layer with 1 unit. 
 
After 9 epochs: 
0.0516 loss, 0.0664 dev loss, 0.2046 test loss 
0.0.9847 accuracy, 0.9857 dev accuracy, 0.9035 test accuracy 
 
Though we did well on the train and dev set, we did horrible on 
our test set. This meant that we overfit on the train and dev set. 
 
Experiment 2: 

Here we bumped experiment 1 convolutional layer filters up 
to 32, GRU units to 1024, and dropout to 0.5. 
 
After 9 epochs: 
0.0542 loss, 0.0737 dev loss, 0.0256 test loss 
0.09838 accuracy, 0.9714 dev accuracy, 0.9881 test accuracy 
 
As you can see, a bigger network and dropout increased our test 
set performance drastically. 
 
Experiment 3: 
 Here we added a dropout after each ReLU activation in our 
network with 0.5 dropout. 
 
After 9 epochs: 
0.080 loss, 0.0757 dev loss, 0.0534 test loss 
0.9711 accuracy, 0.9905 dev accuracy, 0.996 test accuracy 
 
As you can see, more dropout allowed our dev and test sets to 
perform much better while preventing our train set from 
overfitting. 

VI. RESULTS & ANALYSIS 
We see that our misclassifications come down to load 

profiles that are hard to determine in our data set. We also have 
situations in our data set where values can hover around 0 for a 
while whilst popping up in one direction or another. As we 
increased the model size, it reduced overfitting our model. We 
also had to hand label 1000s of load profiles which could have 
impacted performance if we had mislabeled data. Since our data 
set is not that large.  We tested on many other models and 
experiment 3 with Adam worked the best.  We took preliminary 
error analysis and determined that we would need more data 
with more varying degrees of noise and CT mismatches. We 
also realize that more data augmentation would also help 
results. 



VII. CONCLUSIONS AND FUTURE WORK 

A. Conclusions 
We see that with experiment 3 gave the best results in 
determining accurate classification for our dev and test set. 
0.080 loss, 0.0757 dev loss, 0.0534 test loss 
0.9711 accuracy, 0.9905 dev accuracy, 0.996 test accuracy 
 
We also note that CNN with GRU create a powerful DNN, 
mixed with Adam optimization.  We experimented with other 
networks early on in the process and had bad to varying results, 
not noted in our report. 

 
Therefore, among all our models, experiment 3 with more 
dropouts performed the best.  

B. Future Work 
Future work would be to enhance the input features. We can 

utilize timestamps, converted to hours and minutes; so that the 
DNNs can learn a correlation to the time of day. This would 
require scraping time-zones from each of the data points. We 
could also gather weather data, specifically cloudiness. With 
that knowledge, the DNNs can correlate dips in power to 
cloudiness to better predict CT polarities. 

We also noticed that load profiles may have unknown 
polarity and thus, couldn’t use it with our binary classification. 
In the future, we could add a third label and turn this task into 
a multi-classification problem. An example of unknown 
polarity would be when the power is always 0, or the power 
oscillates wildly. 

New architectures have appeared that we were reluctant to 
dig into due to time constraints.  Future work will be to try 
Siamese networks, ConvLSTMs, and investigate using 
attention layers if more data, especially weather is available. 
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