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Abstract

We configured three convolutional neural networks (ConvNets) to perform seman-1

tic segmentation on high-resolution, multi-temporal satellite Imagery. Our best2

model correctly classifies seasonal reservoirs, which bear much archaeological3

significance in south Indian prehistory, with a balanced accuracy (Ā) of 76% on the4

test set. The deep learning pipeline (including data pre-processing, augmentation,5

and model training) that we present here may provide insights for archaeologists6

and geospatial scientists alike who seek to map small features (ca. meters across)7

in arid conditions.8

1 Introduction9

A rock pool, or a gnamma, is a weathering pit formed during wet seasons (Figure 1); archaeologists10

have long speculated that these geomorphological features have afforded Neolithic–Iron Age commu-11

nities the possibility to cope with deteriorating supply of, and perhaps increasing demand for, water12

across the Deccan region in South India [1]. Whereas their spatial distribution may contribute to our13

understanding of site growth, early state formation, and technopolitics in southern Indian prehistory,14

mapping these features is not always easy: they are often located on inaccessible inselbergs and15

usually too small (ca. meters across) to be discerned on satellite images — especially those available16

to public (and indeed to ill-funded archaeologists; e.g. Landsat 8 imagery).17

We propose that deep neural networks, in particular Fully Convolutional Neural Networks (FCNNs),18

can be employed in conjunction with high-resolution, multi-temporal PlanetScope (PS) imagery to19

detect spectral signals of water that track a seasonal pattern in the Deccan region. We therefore20

implement semantic segmentation and produce per-pixel probability map that highlights these21

seasonal reservoirs.22

2 Literature review23

Multiple scholars have demonstrated the success of FCNNs — which typically generate pixel-wise24

output (or label map) following convolutional (conv), pooling, and unsampling layers — in detecting25

geomorphological features on remotely sensed data: notably, Wang et al. employed a pre-trained26

model to classify extra-terrestrial craters [2]. Similar to Palafox et al., Wang and his team proposed27

multi-scale receptive fields to tackle various sizes of landforms [3]; their binary classifiers are28

instrumental in the exploration outlined in this paper.29

We recognized the unbalanced distribution of classes in our training data, and we referred to much30

work on the segmentation of medical images. In many cases, medical specialists emphasize recall31

(or sensitivity): Felzenszwalb et al., for example, adopted a ‘hard negative mining’ approach that32

reintroduces misclassified negatives in the training set [4]. This metric is useful in our analysis of33

rock pools, but we also want to consider the number of false positives: perennial reservoirs, often34
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Figure 1: Multiple rock pools (red boxes) identified on 3-meter PlanetScope images, taken near
(15.265N, 76.617E) in (above) dry season, April 2017 and (below) post-monsoonal season, October
2017. Scale: 1 : 3 000.

dated to the Medieval period, may be incorrectly classified as rock pools when they shrink in dry35

seasons. Câmara Neto et al., upon studying blood vessels in fundus image, proposed an alternative36

method to evaluate the performance of a model; balanced accuracy (Ā), as defined below, provides a37

balanced weighting of sensitivity and specificity [5]. In this paper therefore we use Ā instead of the38

accuracy measure (which would be misleading for our dataset).39

Ā = α× sensitivity + β × specificity (1)

where α and β — two weighting factors — are set to 0.5, following the convention of Brodersen et al.40

[6].41

3 Datasets42

As shown in Figure 2, we manually labelled rock pools based on previous fieldwork in the Maski43

Archaeological Research Project (MARP) [7], Global Surface Water (GSW) data [8], and monthly44

composites generated from PS satellites [9]; 12 basemap quads — GeoTIFF files that contain 4096 ×45

4096 pixels — were fetched from a Web Map Tile Service (WMTS) server, covering six bands from46

two seasons (April 2017 and October 2017). In the 150 km2 study area bounded by lat/long pairs:47

76.4 E, 15.2 N and 76.6 E, 15.4 N, these basemaps were cropped into 512 × 512 images, where48

binary mask labels (including ca. 5,000 positive examples) were generated. 5% of the data are used49

for testing purposes.50

To address our skewed dataset, we randomly selected crops that contained positive labels, rotating51

them by either 90, 180, or 270◦(see Figure 2). As shown in Table 1, the data augmentation slightly52

improved the performance of our final model (ConvNet C — discussed below): despite improvement53

in F1 score, Ā only marginally increased. Nonetheless, we trained the model with the largest dataset.54

4 Learning method55

For the training purposes, we propose three ConvNet configurations, A–C (Figure 3): the ConvNet56

depth increases from left to right. ConvNet A, for example, consists of three blocks of encoders,57

which contains two or three convolutional layers with a receptive field of 3 times 3 and a rectified58
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Figure 2: Data pre-processing and augmentation.

Table 1: Effects of data augmentation on model performance

× times of original size Recall F1 score Ā

2 0.586 0.551 0.793
5 0.604 0.664 0.802

10 0.602 0.704 0.801

linear unit (ReLU); a max pooling operation with stride 2 is used at the end of each block for59

downsampling.60

A fully connected layer decodes the ConvNet; we then aimed to minimize the binary cross-entropy61

loss, defined as:62

Loss = − 1

m

m∑
i=1

yi · logŷi + (1 − yi) · (1 − ŷi) (2)

where m is the number of examples, and yi and ŷi denote the i-th scalar value in the model output63

and label, respectively.64

5 Implementation65

The networks were trained using minibatch gradient-descent (MBGD) with a batch size of 2. Increas-66

ing the batch size did not seem to have an impact on the accuracy of the model, although smaller67

batch sizes used fewer computational resources and thereby resulted in faster training. A common68

problem with smaller batch sizes may be that the loss does not converge efficiently; however, we69
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Figure 3: Three configurations of ConvNets; input and Dense layers are not included.

observed that, in this case, using a batch size of 2 resulted in a reasonably smooth loss curve while70

keeping the training time low. We used an ADAM optimizer with a learning rate of 0.001.71

Table 2 was generated after we trained on each model for 200 epochs. The results are consistent with72

Simonyan and Zimerman’s observation (2014) that, given sufficient data, a deeper ConvNet (in this73

case, C) outperforms its shallower counterparts. ConvNet C also shows high recall and precision74

compared to the other two configurations (53.3% vs 48.8% and 51.9%; 66.7% vs 51.7% and 59.8%).75

Furthermore, the results (cf. Table 2) indicate that our models are not subject to high variance despite76

the great number of learnable parameters.77

Prediction maps were computed using ConvNet C: among the six correctly labelled rock pools shown78

in Figure 4, the classifier detected five. Qualitatively, false positives only occurred around the edges79

of these weathering pits; no perennial reservoirs were misclassified, and indeed this should give the80

archaeologist peace of mind.81

4



Table 2: Effects of ConvNet depth on model performance

Training set Test set

ConvNet configurations Recall F1 score Ā Recall F1 score Ā

A 0.488 0.598 0.744 0.378 0.437 0.689
B 0.519 0.624 0.759 0.463 0.522 0.732
C 0.602 0.704 0.801 0.524 0.587 0.762

Figure 4: Prediction maps (d–f) vs groundtruth (a–c).

6 Next steps82

Our deepest ConvNet achieved an Ā of 76% on the test set; the few false positives suggest that83

different receptive fields, as proposed by e.g. Wang et al., may be unnecessary for the application in84

question. The data augmentation however failed to improve our models significantly: it is possible to85

explore automated augmentation policies using, for example, Population Based Augmentation (PBA)86

[10].87

In the future, we will work closely with archaeologists at Stanford: we will develop a model that88

is compatible with the Google Earth Engine (GEE) backend for image visualization and future89

prediction. The model will be able to estimate the location, density, and potentially volume of these90

rock pools, further contextualizing prehistoric settlement in south India.91

7 Contributions92

Jain implemented the convolutional neural network and analyzed the results of the model using93

statistical metrics for different network configurations and data augmentations.94

Shi collected and manually labelled the data used for training. In addition, he used his domain95

expertise to visually analyze the results of the model. He also drafted the report and prepared the96

video.97

We would like to thank Claudia A. Engel and Stace D. Maples for their support with the GSW and PS98

data. Andrew Bauer has generously offered his knowledge of South Asian archaeology and assisted99

our labelling process. We are also grateful for Shahab Mousavi’s guidance and patience throughout100

the project: you made these stressful times less challenging for both of us.101
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