
Using Generative Adversarial Imitation Learning for
Policy Learning in Agent-based Simulation

Environments

Kaushik Kasi
SCPD

Stanford University
kausk@stanford.edu

Abstract

This project attempts to explore Generative Adversarial Reinforcement Learning
(GAIL) in the context of simulation environments. This project applies GAIL
to learn policies for the Lunar Lander OpenAI gym and Humanoid PyBullet
environment, and benchmarks GAIL-learned policies against policies learned from
traditional reinforcement learning (RL) algorithms. It finds that in the environments
and specifications tested, GAIL actually learns a less optimal policy than traditional
RL algorithms such as Trust-Region Policy Optimization and Soft Actor-Critic,
and requires more training episodes.

1 Introduction

Generative Adversarial Networks (GANs) have been gaining a lot of traction in recent research
efforts, due to their flexibility and effectiveness. The most common applications of GANs have been
in the visual space for problems such as image generation and visual style transfer. This project aims
to leverage generative networks in order to learn policies for agents in simulation environments - a
problem typically studied in the reinforcement learning (RL) space. Generative Adversarial Imitation
Learning (GAIL), introduced in [Ermon, Ho], bridges the gap between GANs and the policy training
work that has been done in reinforcement learning. Simulation environments such as the OpenAI gym
and PyBullet allow researchers to quickly prototype and test policy agents against realistic scenarios.
In this project, I will try to use a generative network to train agents in the Lunar Lander OpenAI gym,
and the Humanoid PyBullet environment.

2 Related work

At a high level, RL is a set of learning algorithms that help an agent within an environment learn
an optimal policy to maximize reward [Szepesvari]. RL algorithms are often formulated as trying
to learn a policy, π, by optimizing a function Qπ(s, a) which is the expected reward of performing
action a in state s, given by policy π.

One common RL algorithm is Deep Deterministic Policy Gradient [DDPG], which is also character-
ized as an "actor-critic" model, and has been used successfully for a variety of simulation benchmarks
[Lillicrap]. In this model, an "actor" deep neural network outputs an action based on the state. This
proposed action and state is used by another "critic" deep neural network to approximate Qπ(s, a),
and the loss is used to iterate on and develop a policy.

CS230: Deep Learning, Winter 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3 Background on GAIL

Another approach to policy learning is having an agent attempt to emulate another agent which
has already learned an expert policy. Generative Adversarial Reinforcement Learning, (GAIL),
introduced in 2016 by Jonathan Ho and Stefano Ermon, provides an algorithm to do this, by
formulating policy learning as a generative modelling problem.

At a high level, GAIL initializes a policy and generates (state, action) pairs, τi under that policy
in a given environment. A discriminator network is trained to differentiate between τE generated
under an expert policy vs. τi from a generated policy, and the loss from the discriminator is used to
update the generated policy using Trust Region Policy Optimization (TRPO). The goal is that over
many iterations, the policy and discriminator will both improve simultaneously, until the policy has
improved so much that the discriminator cannot distinguish between τi and τE .

This is the algorithm described in [Ermon, Ho], reproduced from their paper:

Algorithm 1: GAIL algorithm
Inputs: Expert trajectories τE ∼ πE , Discriminator parameters θ0, ω0;
for i = 0, 1, 2... do

Sample τE ∼ πθi from the generator policy;
Update the discriminator parameters from ωi to ωi+1 with the gradient
Êτi [∇w log (Dw(s, a))] + ÊτE [∇w log (1−Dw(s, a))];

Take a policy step from θi to θi+1 using the Trust-Region Policy Optimization (TRPO) rule,
with cost function log(Dwi+1(s, a);
Êri [∇θ log πθ(a | s)Q(s, a)]− λ∇θH (πθ);
Q(s̄, ā) = Êri

[
log

(
Dwi+1(s, a)

)
| s0 = s̄, a0 = ā

]
end

4 Approach

For both the Lunar Lander and PyBullet environments, I will identify a pre-trained agent for the
purposes of training a GAIL model. I will then generate trajectory data τE from the experts, and then
use GAIL models to learn policies for the agents in these environments.

5 Dataset and Features

The Lunar Lander OpenAI gym (LunarLanderContinuous-v2) [Brockman et. al.] is a Reinforcement
Learning simulation environment with continuous state space and discrete action space. The state
space is an 8-dimensional vector describing velocities and position of a rocket, and the possible
actions are push left, push right, push up, and do nothing. Expert data was generated by loading an
policy for this environment that was pre-trained using the Soft Actor-Critic algorithm [Haarnoja]
from the RL Baselines Zoo [Raffin]. This policy was deployed within the environment and used to
generate 10000 trajectories τE from the Lunar Lander environment.

The Humanoid simulation (HumanoidPyBulletEnv-v0) is a PyBullet Gym [Ellenberger] that simulates
policies on moving the joints of a humanoid agent that is trying to walk. . It is a complex environment
to learn with 376-dimensional continuous observation space and a 17-dimensional continuous action
space. 10000 expert trajectories were generated using a pre-trained Humanoid model supplied by
OpenAI’s Roboschool [Brockman et. al.], made avaiable by PyBullet Gym [Ellenberger].

6 Experiments

The rocket agent was trained using the GAIL algorithm within the Lunar Lander environment using
the pregenerated data. The training was done for 1 million episodes - this figure was suggested
based on experiments done on this environment by previous literature [Li et. al., Ermon, Ho]. For

2



benchmarking purposes, a Trust-Region Policy Optimization (TRPO) policy and a Soft Actor-Critic
(SAC) policy were also trained on these environments.

The humanoid agent with the HumanoidPyBulletEnv-v0 environment was trained for 8 million
episodes. Previous literature [Ermon, Ho] suggests that 75 million episodes is necessary for this
agent to learn a full working policy for this environment, however this wasn’t very feasible given
time and computational constraints.

The Stable Baselines library [Hill et. al.] which I used to run the GAIL model advised that using the
default hyperparameter values should be suitable for most RL problems, therefore I didn’t pursue a
hyperparameter search. Given more time, I would use a hyperparameter optimization framework
such as Optuna [Akiba et. al.] to find the most optimal values.

Hyperparameters used (select values posted here):

Policy Hidden Layer Size Episodes per Epoch GAE factor
MlpPolicy 100 4096 0.97

7 Results

Figure 1: (a) Average reward of policy at each timestep of training (b) Loss of generated policy from
discriminator

Figure 2: (a) Average reward of final policy taken over 40 simulation episodes

8 Discussion

During the experiment for Lunar Lander, 3 metrics were observed: the learning curve, the generated
policy’s loss against the discriminator, and the final reward yielded by the trained policy. As evidenced

3



Figure 3: (a) Average reward of policy at each timestep of training (b) Loss of generated policy from
discriminator

Figure 4: (a) Screenshot of humanoid from PyBullet

by the learning curve in Figure 1(a), GAIL generally required more training to learn optimal policies
compared to TRPO and SAC. However, it is corroborated by the increasing reward and decreasing
discriminator loss that policy iteration is indeed occurring by GAIL (Figures 1(a), 1(b)). The final
GAIL policy at the end of 1 million training episodes yielded an average reward of -93, compared to
the average reward of SAC and TRPO which were in the 48-50 range (Figure 2(a)).
Of note - the reward of the SAC policy peaked around 400k training episodes and actually declines
after that (SAC was only trained for 480k iterations). Similarly, TRPO training saw steady improve-
ments until 250k training episodes and only moderate improvements afterwards. This may be a sign
of the algorithm overfitting during training.
Preliminary metrics were collected for the humanoid agent, which was trained for 8 million episodes.
Though there wasn’t a noticeable improvement in the agent’s policy in this timeframe (Figure 3(a)),
the discriminator loss decreases over time for this agent, which indicates that policy learning is
occuring (Figure 3(b)). Qualitatively, observing the video of the humanoid shows that the agent has
learned a "jumping" behavior, but is not quite able to walk yet. The Github link for this project will
include videos of this.

9 Conclusion/Future Work

While this project was not able to show that GAIL is superior to existing policy-learning algorithms,
it opens up interesting follow-up inquiries. Given more time, human-hours, and computational
resources, I would focus improving this project along these criteria:

1. Exploring and tuning hyperparameters according to best practices in reinforcement learning.

4



2. Training the GAIL agents for more iterations to see when they eventually learn optimal
policies comparable to trained experts.

3. Training agents in more dynamic environments, such as Humanoid Flag Runner, which
require more complex policy learning.

4. Performing more robust error analysis on the learned models.
5. Visualizing these simulations in more interesting ways.

10 Contributions

Apart from the gracious help of the TAs and cited reference materials, I was the only contributor to
this project. This work was only used for CS230 and not for any other class or purpose. I worked on
everything mentioned here, including identifying the problem, setting up the simulation environments,
generating the data, training the models, and surfacing/interpreting the results.

11 Code and Supplemental Videos

https://github.com/kausk/cs230-gail-finalproject

References

Benjamin Ellenberger. (2018–2019). PyBullet Gymperium. https://github.com/benelot/pybullet-gym.

Deep Deterministic Policy Gradient¶. (n.d.). Retrieved November 17, 2020, from
https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, Wojciech
Zaremba. (2016). OpenAI Gym.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov,
O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, Y.. (2018). Stable Baselines.
https://github.com/hill-a/stable-baselines.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel. (2017). Trust Region Policy
Optimization.

Jonathan Ho, Stefano Ermon. (2016). Generative Adversarial Imitation Learning.

Mart Abadi and Ashish Agarwal and Paul Barham and Eugene Brevdo and Zhifeng Chen and Craig Citro
and Greg S. Corrado and Andy Davis and Jeffrey Dean and Matthieu Devin and Sanjay Ghemawat and
Ian Goodfellow and Andrew Harp and Geoffrey Irving and Michael Isard and Yangqing Jia and Rafal Jozefowicz
and Lukasz Kaiser and Manjunath Kudlur and Josh Levenberg and Dandelion Mané and Rajat Monga and
Sherry Moore and Derek Murray and Chris Olah and Mike Schuster and Jonathon Shlens and Benoit Steiner
and Ilya Sutskever and Kunal Talwar and Paul Tucker and Vincent Vanhoucke and Vijay Vasudevan and
Fernanda Viégas and Oriol Vinyals and Pete Warden and Martin Wattenberg and Martin Wicke and Yuan Yu and
Xiaoqiang Zheng. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

Oliphant, T. (2006). A guide to NumPy. (Vol. 1) Trelgol Publishing USA.

Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Christopher Pal, Derek Nowrouzezahrai. (2020).
Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization.

Peng, X., Abbeel, P., Levine, S., Panne, M. (2018). DeepMimicACM Transactions on Graphics, 37(4), 1–14.

Raffin, A.. (2018). RL Baselines Zoo. https://github.com/araffin/rl-baselines-zoo.

Szepesvari, C. (2010). Algorithms for Reinforcement Learning. Morgan and Claypool Publishers.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
Daan Wierstra. (2019). Continuous control with deep reinforcement learning.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine. (2018). Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor.

Yunzhu Li, Jiaming Song, Stefano Ermon. (2017). InfoGAIL: Interpretable Imitation Learning from Visual
Demonstrations.

5

https://github.com/kausk/cs230-gail-finalproject

	Introduction
	Related work
	 Background on GAIL 
	Approach
	Dataset and Features
	Experiments
	Results
	Discussion
	Conclusion/Future Work 
	Contributions
	Code and Supplemental Videos

