
Prediction of Velocity Magnitude for Flows around
Bluff Bodies on Irregular Geometries

Ali Kashefi
Department of Civil and Environmental Engineering

Stanford University
kashefi@stanford.edu

1 Abstract

A deep learning configuration for prediction of the velocity magnitude field over bluff bodies is
presented. Our neural network is based on a modified segmentation track of PointNet to take its
advantages over traditional convolutional neural networks (CNNs). Laminar steady-state flows over
seven different cross sections are considered as test cases for generating data set. The procedure of
choosing hyper-parameters is discussed. Visual comparison between the ground truth and predicted
fields is provided. Computed mean square error demonstrates a reliable level of accuracy of the
prediction. Our network obtains a considerable rate of speedup for predicting the velocity field in
comparison with our regular numerical solver.

2 Introduction

One of the most important contributions of machine learning tools to Computational Fluid Dy-
namics (CFD) simulations is reducing the computational expenses. Even with high performance
computing techniques [Moureau et al., 2011, Nagel et al., 2019] and efficient numerical algorithms
[Filelis-Papadopoulos et al., 2014, Kashefi and Staples, 2018]) for accelerating CFD simulations,
investigation of geometrical parameters for reaching an optimized design is yet computationally
expensive, specifically due to requiring a huge number of iterations for analyzing flow fields. To
overcome these issues, a few or all the components of a CFD solver have been replaced by a neural
network [Sekar et al., 2019, Guo et al., 2016, Tompson et al., 2017, Thuerey et al., 2019, Bhatnagar
et al., 2019].

3 Related Work

To employ artificial neural networks as a replacement of CFD solvers, it is critical to appropriately
feed CFD data into a network. Hence, an effective data representation is crucial. The connection of
neural networks with Cartesian grids is straightforward. In this case, using two and three-dimensional
convolutional neural networks (CNNs) is a regular approach [Fukami et al., 2019, Lapeyre et al., 2019,
Kim and Lee, 2020]. Based on this scenario, each vertex of a Cartesian grid corresponds to a pixel of
an image processed by a CNN. Nevertheless, using unstructured grids is unavoidable for real-world
applications. In contrast with Cartesian grids, the connection of unstructured grids, and consequently
scatter CFD data, with neural networks becomes challenging. The approach to connect scatter CFD
data to a two or three-dimensional CNN is to use pixelation. Using pixelation, scatter CFD data is
projected into a two or three-dimensional Cartesian grid such that they become readable by regular
CNNs [Sekar et al., 2019, Guo et al., 2016, Tompson et al., 2017, Thuerey et al., 2019, Bhatnagar
et al., 2019, Jin et al., 2018, Zhang et al., 2018, Han et al., 2019, Hui et al., 2020, Hasegawa et al.,

CS230: Deep Learning, Fall 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



S = 1m

Inlet Outlet

Perfect Slip

Perfect Slip

32 S

30 S8 S

U

x

y

Figure 1: Schematic representation of the physical domain for a cylinder with a triangular cross
section

2020]. However, this approach has several shortcoming such as introducing error to the dataset due
data interpolation, introducing artificial roughness to previously-smoothed curves in CFD domains,
wasting computational capacities of CNNs due to masking interior pixels corresponded to an object
inside CFD domains, and etc. To overcome these issues, we present scatter CFD data as a point
cloud and consequently use a point-net-based neural network such as PointNet [Qi et al., 2017] for
prediction of velocity magnitudes.

4 Dataset and Features

To generated our dataset, first we need to solve the governing equations of fluid motions. Incompress-
ible viscous steady flow is governed by the continuity and momentum equations as follow:

∂u

∂x
+
∂v

∂y
= 0, (1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (3)

where u and v indicate x and y components of the velocity vector, respectively. p stands for the
absolut pressure of the fluid. ρ is the fluid density and µ shows the dynamics viscosity of fluid.
Specifically, we are interested in the velocity magnitude (U ), which is computed by

U =
√
u2 + v2. (4)

One may refer to Kashefi and Staples [2018] for further details of the equations such as enforced
boundary conditions. The solution of Eqs. 1–3 is function of geometry of the object inside the domain,
while they do not have any analytical solutions. The Gmsh [Geuzaine and Remacle, 2009] application
is employed for the discretization of the fluid domain by finite volume meshes. OpenFOAM [Weller

2



et al., 1998] is utilized to obtain the numerical solution of Eqs. 1–3, which is considered as the ground
truth. The velocity magnitude is made dimensionless as follows:

U∗ =
U

U∞
, (5)

where U∞ is the uniform input velocity to the domain (see Fig. 1). In the next stage, we scale U∗ in
a range of [0, 1] by the following formulation:

U
′
=

U∗ −min(U∗)

max(U∗)−min(U∗)
. (6)

We consider seven various geometries: circle [Behr et al., 1995], square [Sen et al., 2011], triangle
[Kumar De and Dalal, 2006], rectangle [Zhong et al., 2019], ellipse [Mittal and Balachandar, 1996],
pentagon [Abedin et al., 2017], and hexagon [Abedin et al., 2017]. A summary of the geometries is
provided in Table 1. A total number of 1875 data is generated. We split the generated data into three
categories of training (80%), validation (10%), and test (10%) sets randomly.

Shape Variation in
orientation

Variation in
length scale

Number
of data

Circle - a = 1 m 1
Equilateral hexagon 3◦, 6◦, . . . , 60◦ a = 1 m 20
Equilateral pentagon 3◦, 6◦, . . . , 72◦ a = 1 m 24
Square 3◦, 6◦, . . . , 90◦ a = 1 m 30
Equilateral triangle 3◦, 6◦, . . . , 180◦ a = 1 m 60
Rectangle 3◦, 6◦, . . . , 180◦ a = 1 m; b/a = 1.2, 1.4, . . . , 3.6 780
Ellipse 3◦, 6◦, . . . , 180◦ a = 1 m; b/a = 1.2, 1.4, . . . , 4.2 960

Table 1: Generated geometries; For circle, equilateral hexagon, equilateral pentagon, and equilateral
triangle, a is defined as the main diameter. For square and rectangle, a is defined as the small side,
while b is defined as the large side (if any). For ellipse, a and b are defined as the small and large
diameters respectively.

5 Methods

We take the segmentation component of the PointNet architecture [Qi et al., 2017] for our purpose
(see Fig. 2). One may refer to Qi et al. [2017] for details of the PointNet architecture. We adjust the
network according to our desired application. This adjustments involves two main steps. First, the
“sigmoid” activation function is used in the last layer. Second, mean square error (MSE) is used as the
loss function. MSE is a suitable loss function (L) for deep learning of computational fluid dynamics
and frequently is used in the literature (see e.g., Refs. Sekar et al. [2019], Bhatnagar et al. [2019]).
Thus, this function is used in this project and determined as

L =
1

N

(
N∑
i=1

[
(U

′

i − Ũ
′

i )
2
])

, (7)

where Ũ
′

is the velocity magnitude predicted by our neural network. N indicated the number of
points inside the cloud. In this study, we take N = 1024. We use the Adam optimizer [Kingma and
Ba, 2014]. The learning rate of α = 5× 10−4 and the hyper-parameters of β1 = 0.9, β2 = 0.999 are
chosen. The batch size of 256 is selected. We stop training after 4000 epochs to avoid over-fitting. The
training process takes approximately 10 hours on our available GPU. To set these hyper-parameters,
a systematic process has been undertaken. To save space, we present our analysis for the learning
rate and the batch size. Table 2 and Table 3 demonstrate a summary of our analysis respectively
for the batch size and the learning rate. Note that another important hyper-parameter is the size
of the global feature (see Fig. 2), since a relatively higher size leads to a more accurate encoding
of the geometrical features of the CFD domain. Based on our numerical experiment, the size of
2048 led to 4.3% reduction in the average error of the test set in comparison with the size of 1024.
Notwithstanding this success, the choice of batch size of 256 was impossible due to the memory
limitation. On the other hand, the batch size of 128 increased the training time to 16 hours; and that
is why we stand with 1024.

3



Figure 2: Schematic representation of PointNet; the segmentation branch of this network is used in
the current study. This figure is completely taken from Qi et al. [2017].

Batch size 64 128 256
Average loss (L) of the training set 4.86E−5 5.38E−5 8.47E−5
Average loss (L) of the validation set 9.75E−4 8.92E−4 6.83E−4
Average loss (L) of the test set 4.01E−3 2.81E−3 2.17E−3

Table 2: Effect of batch size on the accuracy of training, validation, and test sets

6 Experiments/Results/Discussion

A visual comparison between the ground truth and our network prediction for a few different cross
sections selected from the test set is made in Fig. 3. Quantitatively, the average, minimum, and
maximum L2 norm error of the test set are tabulated in Table 4. Accordingly, an excellent to
reasonable level of accuracy of prediction is obtained. Next, we report the speedup factor obtained by
our neural network to assess the rate of computation accelerating with reference to our traditional
computational fluid dynamics solver. The wall time consumed on our available CPU for the simulation
of the velocity magnitude for 256 unseen shapes by the CFD solver takes approximately 10105
seconds (nearly 3 hours), while our network predicts the same field for these 256 shapes in 6 seconds
on our available GPU. Thus, the a speedup factor of 1683 is achieved. Note that this number is not
absolute and strongly depends on the efficiency of our computational resources.

7 Conclusion/Future Work

We proposed a deep learning strategy for the prediction of velocity magnitude in complex geometries.
Our neural network was fundamentally based on the segmentation component of PointNet Qi et al.
[2017]. By means of this deep learning configuration, potential users are able to preserve the accuracy
of CFD data for training. Moreover, they would be able to study the effect of small variations in
object geometries, something that is not achievable using pixelation strategies and regular CNNs,
unless a super-high resolution input is used, which is computationally expensive by itself. Similarly,
boundary smoothness is not destroyed using our approach in contrast with CNN-based algorithms.
For our future projects, we investigate the prediction of the velocity vector (u and v) and pressure (p)
fields (rather than just simply U ). Moreover, we are interested in unsteady flows where objects inside
the domain or domain boundaries evolve in time, and thus a dynamic point-cloud deep learning is
essential.

8 Contributions

This team has a one member and all the tasks have been carried out by the single author. The basic
code of the PointNet architecture has been taken from HERE. This code has been written by the
Keras library [Chollet, 2015]. However, the author modified the code for the purpose of solving the
regression problem.

4

https://github.com/garyli1019/pointnet-keras


Learning rate 1×10E−4 2×10E−4 5×10E−4
Average loss (L) 2.88826E−3 3.38516E−3 2.17772E−3
Maximum loss (L) 6.42315E−2 8.07633E−2 6.88919E−2
Minimum loss (L) 1.66632E−4 5.42080E−4 2.06523E−4

Table 3: Effect of learning rate on the accuracy of prediction of test set; for all the learning rate, the
fixed batch size of 256 is chosen. For each learning rate, iterations are continued until a convergence
for the validation set is observed.

Figure 3: Each row shows a set of input as a point cloud (left), ground truth of the velocity magnitude
(center) and the predicted velocity magnitude (right) for a cross section

L2 norm
Average 4.66658E−3
Maximum 2.62472E−1
Minimum 1.43709E−2

Table 4: Error analysis of prediction of the velocity magnitude (U ) for 256 unseen data (test set)

References
Z. Abedin, N. A. Khan, M. M. Rizia, and M. Q. Islam. Simulation of wind flow over square,

pentagonal and hexagonal cylinders in a staggered form. In AIP Conference Proceedings, volume

5



1919, page 020004. AIP Publishing LLC, 2017.

M. Behr, D. Hastreiter, S. Mittal, and T. Tezduyar. Incompressible flow past a circular cylinder:
dependence of the computed flow field on the location of the lateral boundaries. Computer Methods
in Applied Mechanics and Engineering, 123(1-4):309–316, 1995.

S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik. Prediction of aerodynamic flow fields
using convolutional neural networks. Computational Mechanics, 64(2):525–545, 2019.

F. Chollet. Keras. https://github.com/fchollet/keras, 2015.

C. K. Filelis-Papadopoulos, G. A. Gravvanis, and E. A. Lipitakis. On the numerical modeling of
convection-diffusion problems by finite element multigrid preconditioning methods. Advances in
Engineering Software, 68:56–69, 2014.

K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows with
machine learning. Journal of Fluid Mechanics, 870:106–120, 2019.

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-and
post-processing facilities. International journal for numerical methods in engineering, 79(11):
1309–1331, 2009.

X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 481–490, 2016.

R. Han, Y. Wang, Y. Zhang, and G. Chen. A novel spatial-temporal prediction method for unsteady
wake flows based on hybrid deep neural network. Physics of Fluids, 31(12):127101, 2019.

K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata. Cnn-lstm based reduced order modeling of
two-dimensional unsteady flows around a circular cylinder at different reynolds numbers. Fluid
Dynamics Research, 2020.

X. Hui, J. Bai, H. Wang, and Y. Zhang. Fast pressure distribution prediction of airfoils using deep
learning. Aerospace Science and Technology, page 105949, 2020.

X. Jin, P. Cheng, W.-L. Chen, and H. Li. Prediction model of velocity field around circular cylinder
over various reynolds numbers by fusion convolutional neural networks based on pressure on the
cylinder. Physics of Fluids, 30(4):047105, 2018.

A. Kashefi and A. E. Staples. A finite-element coarse-grid projection method for incompressible flow
simulations. Advances in Computational Mathematics, 44(4):1063–1090, 2018.

J. Kim and C. Lee. Prediction of turbulent heat transfer using convolutional neural networks. Journal
of Fluid Mechanics, 882, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Kumar De and A. Dalal. Numerical simulation of unconfined flow past a triangular cylinder.
International journal for numerical methods in fluids, 52(7):801–821, 2006.

C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. Training convolutional neural
networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203:255–264,
2019.

R. Mittal and S. Balachandar. Direct numerical simulation of flow past elliptic cylinders. Journal of
Computational Physics, 124(2):351–367, 1996.

V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel cfd code for complex
geometries. Comptes Rendus Mécanique, 339(2-3):141–148, 2011.

W. E. Nagel, D. Kröner, and M. M. Resch. High Performance Computing in Science and Engineer-
ing’18. Springer, 2019.

6

https://github.com/fchollet/keras


C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 652–660, 2017.

V. Sekar, Q. Jiang, C. Shu, and B. C. Khoo. Fast flow field prediction over airfoils using deep learning
approach. Physics of Fluids, 31(5):057103, 2019.

S. Sen, S. Mittal, and G. Biswas. Flow past a square cylinder at low reynolds numbers. International
Journal for Numerical Methods in Fluids, 67(9):1160–1174, 2011.

N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. Deep learning methods for reynolds-averaged
navier–stokes simulations of airfoil flows. AIAA Journal, pages 1–12, 2019.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid simulation
with convolutional networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3424–3433. JMLR. org, 2017.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum
mechanics using object-oriented techniques. Computers in physics, 12(6):620–631, 1998.

Y. Zhang, W. J. Sung, and D. N. Mavris. Application of convolutional neural network to predict airfoil
lift coefficient. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, page 1903, 2018.

W. Zhong, L. Deng, and Z. Xiao. Flow past a rectangular cylinder close to a free surface. Ocean
Engineering, 186:106118, 2019.

9 Appendix

Some relevant figures are listed in this section specifically for those who are less familiar with the
area of computatinoal fluid dynamics.

Mesh Velocity (U)

Figure 4: Finite volume mesh and the corresponding velocity magnitude field for a rectangular cross
section

7


	Abstract
	Introduction
	Related Work
	Dataset and Features
	Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Appendix

