
Listener-Adaptive Music Generation

Sterling Alic
Department of Computer Science

Stanford University
salic@stanford.edu

Christopher Wolff
Department of Computer Science

Stanford University
cw0@stanford.edu

Abstract

We envision a future in which people will be listening to
an infinite, automatically generated stream of music that is
perfectly attuned to their music taste. This project is meant
to be a step in that direction. We propose an algorithm
for training generative models of music that can adapt to
listener feedback. Our approach consists of two phases.
First, we train a recurrent neural network on an existing
dataset of songs. Second, we iteratively present a listener
with generated sequences, and use the feedback to improve
the model. We evaluate our approach in a listening test,
and show that the feedback training improves the music
generated by the model (p ≈ 0.11).

1. Introduction
Music generation is a challenging problem that requires

reasoning over long sequences in order to attain coherent
musical structure. Various deep learning-based approaches
to this problem have previously been proposed. Long short-
term memory networks (LSTMs) [1] are able to deal with
long-range dependencies by maintaining a cell state that can
retain information over many time steps. Music Transformer
[2] and MuseNet [5] make use of self-attention, and demon-
strate that the transformer architecture [8], which has seen
much success in the natural language processing domain, is
also well-suited for music generation. MusicVAE [6] uses a
variational autoencoder to learn a latent distribution of note
sequences, and then samples from this distribution to create
new music.

Our focus is not on algorithmic or architectural advance-
ments, but instead on a novel training procedure that involves
the listener. Our intuition is that listener feedback may be
able to guide the model to generate sequences that the listener
liked and prevent it from generating ones that the listener
didn’t like, similar to how a reinforcement learning agent
adapts to signals from its environment. Furthermore, this
approach may allow a generative model to adapt its outputs
to an individual’s musical preferences. RL Tuner [3] takes

a similar approach and uses an imposed reward function to
refine a sequence predictor with deep Q-learning. In con-
trast to our work, their reward function is based on expert
heuristics rather than human feedback.

2. Dataset
We use the POP909 dataset [9], which consists of pi-

ano arrangements of 909 popular songs. Originally, each
arrangement is a MIDI file, with a duration between 90 to
300 seconds. Figure 1 shows an excerpt of such a file in a
piano roll view.

Figure 1: A piano roll representation of a snippet from a
MIDI file. The horizontal axis captures time, and the vertical
axis captures the pitch of a note. The music is polyphonic;
that is, multiple notes can play at the same time.

We adopt an event-based representation similar to [2, 7]
and convert each file to a sequence of musically meaningful
tokens. These tokens represent:

• 128 note-on events, indicating the start of a new note.

• 128 note-off events, indicating the release of a note.

• 100 time-shift events, ranging from 1ms to 100ms.

• 32 velocity events, indicating how forcefully the note
is played.

The note-on and note-off events span the entire range of
MIDI notes, and the time-shift events are granular enough
to capture subtle timing nuances. Hence, aside from minor
time discretization errors, this representation is a lossless

1

transformation of the original file. During training and in-
ference, each token is mapped to a unique integer between
0 and 387. We randomly split the dataset into three subsets:
90% for training, 5% for validation, and 5% for testing. In
order to benefit from vectorized GPU operations, we split
each song into sequences of length 1024, and pad the final
part of each song with a special token to fit this length.

3. Methods
We formulate the music generation task as a supervised

learning problem. As is common for language models, we
factorize the joint likelihood of an event sequence as a prod-
uct of conditional probabilities.

P (E1:N) = P (E1) · P (E2|E1) · ... · P (EN |E1:N−1)

Our goal is to learn the distribution of the next event given
all previous ones using a sequence-to-sequence model. Once
we have such a model, generating an entire sequence reduces
to iteratively sampling from the probability distribution of
next events. We begin by training a model to maximize the
likelihood for the event sequences in our training dataset.
Second, we repeatedly present a listener with examples of
generated melodies, receive feedback, and then use this feed-
back to improve the model.

3.1. Training a generative model

We experiment with two model architectures: an LSTM
and a transformer. Both are illustrated in figure 2. We chose
these architectures because they are known to be capable of
modeling long-range dependencies and showed promising
results in recent work [2, 5]. In each case, the network input
can be viewed as a sequence of one-hot vectors, and the
labels are one-hot vectors corresponding to the next event
at each step. In other words, the labels are the same as the
inputs, but shifted one time step into the future. During train-
ing, we use gradient descent via adaptive moment estimation
(Adam) [4] to minimize the cross entropy between the true
labels and the predicted labels, averaged over the sequences
from the training set.

`train(y, ŷ) = −
1

N

N∑
i=1

yTi log ŷi

where N is the length of the sequence, yi denotes the true
label vector for event i, and ŷi denotes the predicted label
vector for event i.

The main difference between the two architectures is how
they compute ŷ. The LSTM is a recurrent neural network
that takes one token at a time as an input, and computes the
next token as a function of that input, a hidden state, and a
cell state. Intuitively, the cell state has a similar function-
ality as the human memory. At any point, the model can

choose to forget its entries and update it with new values. It
also helps to prevent vanishing gradients. In contrast, the
transformer uses self-attention to compute the next token
as a function of the entire input sequence and a positional
encoding of the current input. It assigns an attention weight
to every token in the input that indicates how relevant that
token is for computing the output. Future tokens are masked
so that they cannot be taken into consideration. This self-
attention layer is followed by a fully connected layer and
layer-wise normalization. This stack is repeated several
times and then followed by final fully connected layer to cre-
ate the transformer decoder architecture. In contrast to the
original transformer architecture, we only use the decoder
part of the network.

In order to generate a new event, we draw from the distri-
bution

P (·) = ez/T∑
i e

zi/T

where z are the logits of the model and T is a temperature
parameter that controls the entropy of the resulting distribu-
tion. A high T results in higher stochasticity in the event
distribution. We experimented with various value of T , but
found that T ≈ 1 worked best.

Figure 2: An illustration of our model architectures. The
left pipeline shows the transformer and the right pipeline
shows the LSTM.

3.2. Improving the model with listener feedback

In order to adapt the generated music to the preferences
of the listener, we propose a feedback loop that iteratively
re-trains the model using sequences it generates and presents
to the listener. More specifically, we start by presenting the
model with a priming sequence, and generating a piece of
music using the initial model parameters learned in the first
phase. Then, we allow the listener(s) to hear the generated
song, and respond with a reward signal rt at arbitrary times
t, where t is an index for the events in the sequence. The
times t are chosen voluntarily by the listener. The rewards rt

2

correspond to their satisfaction with the generated sequence
right before time t. For instance, if a listener enjoyed a se-
quence they heard, they might respond with with a reward of
+2 at that time. The rewards take values in the set {1, 2, 3},
and there is no limit to the amount of feedback we allow the
user to give.

Figure 3: Examples of loss re-weighting for a sequence of
length 16 and various values of α. A small α results in a
weighting skewed towards the last tokens in the sequences,
and a large α weights the tokens more uniformly.

For each (t, rt), we then create a tuple (Et−K:t, rt) that
stores the last K events before time t along with the corre-
sponding reward. These tuples are stored in a new dataset
Dnew. Next, we train the model using gradient descent, start-
ing from the most recent parameter estimates. For the origi-
nal samples, we continue using the standard cross-entropy
loss function. However, for the newly added samples, the
question of credit attribution arises. Which notes are re-
sponsible for the reward signal? Intuitively, notes closer
to the time of the signal should have a larger effect on the
listener’s decision to reply with a reward. Thus, we propose
the following loss function:

`new(y, ŷ) = −r
K∑
i=1

wiy
T
i log ŷi wi =

(
α− 1

αK − 1

)
αK−i

This is essentially an exponentially weighted average of the
cross-entropy loss at each time step of the sequence, with
higher weights for events close to time t. The hyperparame-
ter α controls the extent of this weighting. The normalizing
factor for wi ensures that the weights sum to one. Figure 3
shows the weight magnitudes for various values of α. The
loss is also weighted by the reward r for the sequence. The
intuition here is that we want to increase the probability of
events from sequences with larger rewards more so than
of those with smaller rewards. Finally, the total risk is a

weighted average of the risk for the samples from the origi-
nal training set and those from the new dataset, controlled
by a weighting factor λ ∈ [0, 1] that controls the relative
importance of each dataset.

Figure 4: An illustration of our proposed training algorithm.

This process of generating new music, receiving feedback,
and augmenting the training set, is then repeated for an
arbitrary period of time. In order to ensure that the dataset
does not grow arbitrarily large, we purge the least recently
added sequences once |Dnew| > dmax. An illustration of the
algorithm is shown in figure 4.

4. Experiments and Discussion
4.1. Model architecture comparison

We start by training two initial models – one LSTM and
one transformer. The LSTM has a single layer, a hidden
state dimension of 512, and a total of about 1.9M parameters.
The transformer consists of four decoders and has about
1.5M parameters. We use mini-batch sizes of 256 and 8
for the two models, respectively, as these were the largest
sizes that fit into our GPU memory. Both architectures use
an embedding layer for the inputs of dimension 256 and
Adam with a learning rate of 0.001 and parameters β1 = 0.9,
β2 = 0.9991. To prevent the gradients from exploding, we
clip them at a threshold of 1. We then train each model for
200 epochs.

Model Train PPL Test PPL
LSTM 6.11 10.51

Transformer 6.93 9.30

Table 1: A comparison of the models’ perplexity measures
for seen and unseen songs.

To compare the two architectures, we evaluate them both
quantitatively and qualitatively. First, we measure their per-
plexity on our test set. Table 1 shows our results. We can
see that while the LSTM is able to fit the training data more
closely, the transformer does a better job at generalizing to
unseen data. Next, we conduct a listening test to compare the
models subjectively. We prime the models with 10 sequences
from our test set, and prompt them to generate a continuation

1We also trained a deeper network with 2 layers and an embedding
dimension of 64, and found that the resulting music was not as pleasant as
that generated by the shallow LSTM. For brevity, we do not include it here.

3

of 1024 tokens each. This corresponds to roughly 30 sec-
onds, depending on the exact tokens. Then, we convert the
outputs to MIDI files, and ask participants which one they
prefer. We also include the real continuation for compari-
son. Figure 5 shows our results. We conclude that neither
model comes close to the real songs. Surprisingly, the LSTM
generates better-sounding continuations despite its higher
perplexity. Hence, we decide to discard the transformer and
only use the LSTM for the feedback-training phase. We

Figure 5: A qualitative comparison of generated continua-
tions from priming sequences. The plot shows the number
of wins in pairwise comparisons between the models.

found that the LSTM learned many basic principles of music
theory, such as playing in key, maintaining tempo, and play-
ing chords. On the other hand, the transformer outputs often
sounded dissonant and incoherent. Both models seemed to
steer away from the musical style of the priming sequence
quite quickly, as the continuations often sounded unrelated
to it. Additionally, we believe to have recognized some of
the sequences the LSTM generated, suggesting that it may
have memorized some sequence chunks from the training
set.

4.2. Feedback training

Next, we use our proposed feedback-training procedure to
improve the LSTM we trained. In each iteration, we sample
a priming sequence from our test set, generate a continuation,
and respond with zero to five (t, rt) pairs. For each pair, we
extract the last K = 128 generated tokens, and append them
to a new dataset. After collecting 32 new samples, we use
the algorithm outlined in the previous section to perform
16 additional epochs of gradient descent, with parameters
α = 0.99 and λ = 0.5. We repeat this process three times,
for a total of 96 feedback signals and 48 training epochs.

To evaluate the effectiveness of this procedure, we com-
pare the initial LSTM before feedback-training to the final
one in a blind listening test. We ask participants to evaluate
25 continuations of priming sequences from our test by stat-
ing which of two continuations they prefer, without telling
them which is which. We found that the listeners prefer the
new model 16 of out 25 times. By treating the experiments
as Bernoulli trials, we can conclude that the sequences from

the new model are better with a p-value of approximately
0.11. Subjectively, we found that the music generated after
feedback training contained slightly more interesting musi-
cal motifs and coherent melodic sequences. However, the
sequences from the two models do seem very similar, and
it’s not obvious to us in what way the additional training im-
proved the model. We believe that a possible explanation for
the improvement is that the model learned to overfit to the
feedback sequences. Since we’re using a relative weighting
between the datasets of λ = 0.5, the few samples from the
feedback dataset contribute greatly towards the overall loss.
This means that the model has an incentive to learn from
these samples and adapt its parameters to generate similar
ones. If similar sequences are generated during the tests, it’s
likely that the listener will again respond positively, even if
the model is just repeating what it has seen.

5. Conclusions and Future Work

In summary, we trained two models to generate piano mu-
sic using a dataset of popular songs. We found that while a
transformer-based architecture is able to generalize to unseen
data better, an LSTM architecture generates sequences that
are preferred by listeners. We then showed that rewards from
a listener can be used to improve the model’s performance
by constructing new training samples and re-weighting the
loss function by the reward signal and a weighting factor
that allows for credit attribution.

In the future, we would like to scale up the feedback
training and potentially collect several thousand, if not more,
feedback signals. This should allow us to explore whether
our approach really does refine the generative model to a lis-
tener’s preferences. Alternatively, we may make the model
publicly available in order to receive feedback on an even
larger scale. Furthermore, we are interested in learning auto-
matic reward signals. It’s unclear how and why exactly we
prefer some music to others, but perhaps it’s possible to learn
a model that can predict whether a certain sequence sounds
good or not. This model could then be used to generate an
unlimited about of feedback data and scale up the training
procedure even further.

Additionally, we’d like to work on learning from negative
feedback. We considered specifying a negative reward, but in
our experiments, this approach resulted in divergence during
training. Perhaps we can take inspiration from reinforcement
learning and treat music generation as a reward maximization
problem. If we were somehow able to start tabula rasa and
learn only from feedback, we may be able to circumvent the
memorization-and-playback problem, and instead discover
how to generate music from first principles.

4

Code and audio samples
The code is available at github.com/cwolffff/musicgen.

Audio samples from the model architecture evaluation
are available at soundcloud.com/sterling-alic/sets/listener-
adaptive-feedback1 and audio samples from the feedback
training evaluation are available at soundcloud.com/sterling-
alic/sets/listener-adaptive-feedback2.

Contributions
Christopher worked on training the models, implement-

ing the feedback training loop, and the model evaluation
experiments. He also wrote the Dataset, Methods, and Ex-
periments sections of the report. Sterling worked on pre-
processing the midi files into event tokens, as well as post
processing of the data. He contributed to the Abstract, In-
troduction, and Dataset sections, created the visuals for and
edited the project report video, and also created the figures
for the model architecture and training algorithms.

References
[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Comput., 9(8):1735–1780, Nov. 1997.
[2] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit,

Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai,
Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck.
Music transformer, 2018.

[3] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel
Hernández-Lobato, Richard E. Turner, and Douglas Eck. Se-
quence tutor: Conservative fine-tuning of sequence generation
models with kl-control, 2017.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017.

[5] Christine Payne. Musenet, 2019.
[6] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne,

and Douglas Eck. A hierarchical latent vector model for learn-
ing long-term structure in music, 2019.

[7] Ian Simon and Sageev Oore. Performance rnn: Generating
music with expressive timing and dynamics. https:
//magenta.tensorflow.org/performance-rnn,
2017.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017.

[9] Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu,
Shuqi Dai, Xianbin Gu, and Gus Xia. Pop909: A pop-song
dataset for music arrangement generation, 2020.

5

https://github.com/cwolffff/musicgen
https://soundcloud.com/sterling-alic/sets/listener-adaptive-feedback1
https://soundcloud.com/sterling-alic/sets/listener-adaptive-feedback1
https://soundcloud.com/sterling-alic/sets/listener-adaptive-feedback2
https://soundcloud.com/sterling-alic/sets/listener-adaptive-feedback2
https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn

