Recognizing Diseased Coffee Leaves
Using Deep Learning
CS230-Fall 2020

Shelly Deng
Department of Computer Science
Stanford University
jsdeng@stanford.edu

Abstract

Since coffee is widely consumed, we aim to build a coffee plant disease recognition algorithm, which
classifies coffee leaf images into one of six health conditions: Healthy, four levels of Rust, and Red Spider
Mite infestation. We first tested a variety of neural networks. Our fully connected neural network (FCNN)
and an AlexNet-inspired convolution neural network (CNN) achieves only 40.3% and 59.4% accuracy
respectively, but our ResNet18 model with transfer learning achieved accuracy of 75.3% on the test set.
We then attempted a two-task approach by 1) separating the leaves based on the three types of health
conditions and 2) separating Rust leaves based on severity using a regression-based classification. With
regularization, dropout, and weighed sampling, we achieved 86.4% and 82.6% accuracy for the three-class
and regression-based classification tasks respectively. However, the macro averaged F1 scores are still low
due to insufficient data and class imbalance.

1 Introduction

Coffee is the second most widely consumed beverage in the world after water, and it contributes significantly to the world
economy. Rust (caused by the fungus Hemileia vastatrix) and pest infestation by Red Spider Mites are two common coffee
plant problems. Both, visibly recognizable in the plant leafs, can cause early defoliation, which negatively impacts coffee
quality and yield?). Early disease recognition and detection are therefore important for quality control in coffee production.
In this project, we aim to train deep learning algorithms which can be used for automated recognition of diseased coffee
plants based on pictures of coffee plant leaves. Specifically, given a set of images of coffee leaves, this project will output the
correct labels for the conditions of the coffee leaves using 1) FCNN, 2) various CNNs with and without transfer learning,
and 3) CNNs with a custom-built regression component. We will also iterate on the various deep learning algorithms using
different hyperparameters in order find the model that best perform this multinomial classification task of identifying the
various conditions of coffee plant leaves.

2 Related work

Researchers have used deep CNNs for a variety of object detection tasks, such as for pedestrian detection!®]. In the similar
space, other tasks include guarana plant classification'®], coffee leaf disease recognition!*®], tomato plant diseases and pest
recognition'?), and coffee grading and disease identification!'¥). AlexNet(*®! with its convolutional layers beat state-of-
the-art machine learning model when it was first developed. To attempt to achieve better performance, researcher began
implementing deeper networks, which grew in depth and complexity[®l. The introduction of residual networks was therefore
revolutionary since it provided a way to reduce complexity of very deep neural network by allowing it to learn identity
mapping from earlier to deeper layers!®/. With the prevalence of the use of mobile device, MobileNet and MobileNetV2(12]
were CNNs developed with efficiency and performance both in mind.

3 Dataset and Features

3. 1 Composition

CS230: Deep Learning, Autumn 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

For this project, we will be using the robusta coffee leaf images dataset (RoCoLe!?!), which contains 1560 images of coffee
leaves total, with 791 healthy leaves and 769 unhealthy leaves. The images were taken by a SMP, /2.2 autofocus smartphone
camera, and has varying resolution but no smaller than 720x1280. Examples of the images can be seen in Figure 1 in
Appendix Section 8.1. We use the following representations: RL = Rust Level, RSM = Red Spider Mite.

Labels Healthy | RL1 | RL2 | RL3 | RL4 | RSM
Classification Number 0 1 2 3 4 5
Number of Pictures 791 344 166 62 30 167
Table 1: Dataset Composition

3.2 Dataset Preprocessing and Splitting

Since the dataset contains images of varying dimensions, we first resized all the images to be 720x720 (See Figure 1). We
then further transform the images by performing center cropping (448x448), add a constant padding of 10, and finally resizing
the images to be either 224x224(x3 channels) for all the CNNs and 64x64(x3 channels) for the FCNN. The dataset is splitted
the following way: 10% test, 18% validation, and 72% training. Since the dataset contains imbalanced classes, care was
taken to ensure that each split contain the right proportion of each of the six classes.

4 Methods

4.1 Two Separate Designs for this Multiclass Classification Task
4.1.1 One-Through Design

The first design involves feeding the full training set containing all six classes into the following neural networks. The details
of each of the architectures can be found in the Appendix. Each of the following models were ran for 30 epochs, with
learning rate of 1e-4, and batch size of 32.

4.1.1.1 (Fully Connected Neural Network (FCNN)

The fully connected neural network, adopted from the CS230 PyTorch Vision example!”), aimed to set a baseline for this
classification task. This dense neural networks consists of three hidden layers, with 3000, 1000, and 200 hidden units
respectively. Each of the layers uses a ReLu activation function except for the last, which uses a Softmax activation function.

4.1.1.2 AlexNet

AlexNet!4?], which is based on LeNet/5], has shown promising results in variety of image classification problems, including
pedestrian detection®], guarana plant classification!'®], and coffee leaf disease recognition!!3]. AlexNet consists of five
convolutional layers followed by 3 fully connected layer, and with ReLu used as the activation function for each layer. The
five convolutional layers uses 11x11, 5x5, 3x3, 3x3, 3x3 filters respectively. Max-pooling of 3x3 filters are applied to the
first, second, and fifth convolutional layers. Dropout rate of 0.5 is applied to the first two fully connected layers.

4.1.1.3 AlexNet-Inspired CNN

Inspired by the original AlexNet as well as the modified adoptation[Q] of the AlexNet used by Sorte et al. in their coffee
leaf disease recognition task, we implemented a variation. The customized CNN consists of 4 convolutional layers followed
by 2 fully connected layers, and with ReLu used as the activation function for each layer except for the last, which uses
SoftMax. The 4 convolutional layers uses 11x11, 5x5, 3x3, 3x3 filters respectively, and max-pooling of 2x2 filters and batch
normalization are applied to each of the convolutional layers. Dropout rate of 0.2 is applied to the second fully connected
layers.

4.1.1.4 ResNet185)

The AlexNet-Inspired CNN and AlexNet have only 6 and 8 layers total. Deeper neural networks have shown to perform well
on classification tasks!®/, but they risk running into the problem of exploding or vanishing gradient. This makes residual
network(®! particularly helpful because it allows for skipped connections between layers. Specifically, the activation of one
layer is fed into another layer deeper in the network. Suppose the following residual block where a!?l has a shortcut to al**?]
and g is an activation function:

alt+2] = g(21+2] 4 glll) = g(WE+2glet1] 4 ple+2) 4 gl)

If W2 = ple+2 — 0, then al*? = al*t2. In other words, this residual block allows the model to learn an identity
mapping from the earlier activation a/? to a deeper activation a!**2].

2

4.1.1.5 MobileNetV2

As farmers might be interested in a model that requires low computational power that can run on mobile devices, we decided
to test out MobileNetV2. MobileNetV2 consists of two types blocks: 1) a residual block with a stride of 1 and 2) a block
with stride of 2 for downsizing. Each block consists of 3 layers: 1x1 filter with ReLU®6, 3x3 depthwise filter with ReLU®6,
and 1x1 convolution without an activation function. These blocks are repeated a different number of times to construct the
full network of MobileNetV2. Detailed architecture can be found in the Appendix.

4.1.1.6 Transfer Learning for AlexNet, ResNet18, MobileNetV2

PyTorchVision[IO] ’s AlexNet, ResNet18, and MobileNetV2 all have output feature size of 1000. For transfer learning, we
apply the following fully connected layers:

Layers | Size Params Activation
Input | 1000 - -
Layer 1 | 128 | + 1000x128 + 128 ReLu
Output 6 128x6 + 6 Softmax
Table 2: Transfer Learning Architecture

4.2 Two-Task Design: With Adoptation of Regression-Based Classification

We decided to also separate this multiclass classification task into a two-step classification problem due to the similarities
between the diseased leaves. In this two-step approach, we will first classify all the leaves to be Healthy, RL, or RSM. This
will use the same models and transfer learning as above, except as a 3-class classification problem, with output layer having 3
units instead.

In the second task, we use only the healthy and rust-inflicted leaf images and aim to classify each into the correct rust level (0
for Healthy and 1-4 for each of the rust level classifications). We adopted ResNet18 and MobileNetV2 by adding 2 new
layers that use ReLu as the activation function and which have 128 and 36 hidden units respectively. Since it maps to a single
real-valued output, the real-valued numbers are rounded to the closest integer to represent the prediction of the class (0-5).

4.3 Loss Functions

For each of the model from Design 1 and 2(i), we used the negative log likelihood (NLL Loss) function

n k-1

1 . ,
() _ » (1)
- > > 1y = jog(i)"),

i=1 3=0
where k = 6 for the six-class classification task and k = 3 for three-class classification task, n is the number of training

examples, and y®, ﬁj(.i) € {0, ...,k — 1}. The SoftMax activation layer outputs 7@, a vector of probability for each of the
classes, and this loss function thus attempts to increase the probability for the correct class.

For Design 2(ii) with the regression-based classification task, we use the mean square error (MSE) loss
1 n
- Z(y(i) _ WTgv(i))2
n <
i=1
This attempts to make each prediction W T z(*) as close to each true label (*) as possible.

5 Experiments, Results, and Discussion

5.1 Testing the Problem Design Frameworks

As a baseline, each of the above neural networks were trained on the full train set (with all six classes) with a learning
rate of le-4, batch size of 32, and 30 epochs. For metrics, we have calculated the loss and overall accuracy (measured

s P TP TP precisionxrecall
by the percentage of correctly labeled images). Precision (755 7p TFP) recall (75575, and F1 (precisiontrecal 7) scores are

calculated for each of the classes using scikit-learn!*!] and averaged to get the macro averages.
Table 2 shows that the FCNN did not do well on either the training or validation set. We had to reduce the resolution to
64x64x3 to make the input feature size manageable, but low resolution of images makes it harder to detect small diseased

spots on the coffee leaves, and without enough hidden layers and units, the algorithm cannot learn the classification task
well. The AlexNet-Inspired CNN, AlexNet, and ResNet18 all fit the training set decently with high accuracy and macro

3

Train Val

Neural Network Loss Acc | Prec | Rec | F1 Loss | Acc | Prec | Rec | F1
FCNN 0876 | 698 | 624 | 64.8 | 63.1 | 1.593 | 40.3 | 34.2 | 334 | 32.9
AlexNet-Inspired CNN | 8.51e-2 | 98.1 | 953 | 96.3 | 95.7 | 1.518 | 59.4 | 47.9 | 42.8 | 44.0
AlexNet 3.76e-2 | 98.7 | 96.0 | 96.8 | 96.4 | 1.105 | 73.4 | 60.9 | 59.9 | 60.0
ResNet18 424e-2 | 98.3 | 959 | 959 | 959 | 0.939 | 799 | 68.4 | 61.3 | 639
MobileNetV2 0360 | 88.8 | 78.8 | 779 | 779 | 0.729 | 76.7 | 58.4 | 53.6 | 55.6

Table 3: Metrics: Loss, Accuracy (%), and Macro Averages (%) for the Six-Class Classification Task

F1 scores. MobileNetV2 has higher loss and lower accuracy and F1 scores comparably, indicating it might require longer
training. None of the models generalizes to the validation, suggesting that they’ve overfitted to the training set.

For ResNetl8, the F1 scores for classes 0-5 are 95.1%, 73.6%, 56.7%, 21.1%, 75.0%, and 62.1%. Possible reasons include
class imbalance and having insufficient images for classes 2-5. Also, these diseased leaves are hard to classify manually
(especially between the rust levels). We thus transformed this task into a two-task problem: regression-based classification
might be better suited for classifying the degree of rust. Here, we used only the transfer learning models.

Comparing Six- Vs. Three-Class Classification Comparing Six-Class Vs. Regression-Based
Tasks Using ResNet18 and MobileNetV2: Classification Tasks Using ResNet18 and
Accuracy, Precision , Recall and F1 MobileNetV2: Accuracy, Precision , Recall and F1
B Resnet, 6-class, Train [} Resnet, 3-class, Train B Resnet, 6-class, Train [l Resnet, Regression-Based, Train
MobileNetV2, 3-class, Train [l Resnet, 6-class, Val @l Resnet, 3-class, Val MobileNetV2, Regression-Based, Train [l Resnet, 6-class, Val
B MobileNetV2, 3-class, Val B Resnet, Regression-Based, Val [MobileNetV2, Regression-Based, Val
100 100
90 90
£ 80 2 8
g g
c c
g 70 8 70
& e
) I |) I III III
50 50
Accuracy Precision Recall Accuracy Precision Recall
(a) (b)
Figure 1

From Figure 1 (a), we see that ResNet18 and MobileNetV2 generalizes to the validation set much better in the 3-class
classification task than the best performing model ResNet18 for the 6-class classification task. We can thus verify our
previous thought that inability classifying between rust levels contribute to high errors. Figure 1 (b) further confirms that
separating rust levels is hard, as seen with the low validation scores for accuracy and macro average precision, recall, and F1.
Finally, neither ResNet18 nor MobileNetV2 generalize well in the regression-based task. This might be due to the fact that
we simply do not have enough training data for these classes. (Rust Level 2, 3, and 4 only have 121, 45, 22 images in the
training set whereas there are 570 images for the Healthy class.)

5.2 Tuning the Best Model

We tried tuning the models with different hyperparameters and mitigations. First, for the insufficient data problem, we’ve
consider random cropping of the center crop to produce more data variation of the same image, but we decided against it.
The diseased spots are sometimes small and can exist anywhere on the leaf. This means that random cropping of diseased
leaves will likely produce many healthy looking samples, which can increase false negatives.

For the class imbalance problem, we tried sampling the training set inversely proportional to the percentage of the each class,
such that the each batch contains roughly the same number of samples from each class. By using PyTorch’s BatchSampler
and WeightedRandomSampler, we are able to oversample the underrepresented class(!).

According to Figure 2a, we mostly misclassify an image with a neighboring label, again showing that separating between
classes is difficult. Figure 2b shows that F1 scores are typically higher for classes with more data. Since validation and

4

Predicted Label

Class | F1 (%) |Support
" 00 0w 000 000
0 0 95.5 142
~ B 1| 787 | 61
g - 2 59.0 29
2Rz o a® 1m0 500 000 3 1.1 1
5
= 4 75.0 5
. 000 200 L 20 000 N
» (b) F1 and the Number of

Images Per Class

R4 000 0o 10 100 300

Figure 2: Number of Examples vs. Model Performance

Tuning Training Validation
NN Task ;\Ielghad Weight Dropout Loss Accur | Prec |Recall| F1 Loss | Accur | Prec | Recall F1
amping | Decay
ResNet18 3-Class Yes 1.00E-02 0.2 3.04E-02 | 994 | 994 | 994 | 994 | 0497 | 896 | 86.1 832 | 845
ResNet18 |Regression-Based No 0 0 2.07E-02| 98.2 | 804 | 77.2 | 786 | 0.185| 835 | 68.7 | 61.3 | 63.9
ResNet18 6-Class No 0 0 424e-2| 983 | 959 | 959 | 959 | 0939 | 799 | 684 | 613 | 63.9
Tuning Test
Weighed | Weight
NN Task Samping | Decay Dropout Loss Accur | Prec | Recall | F1
ResNet18 3-Class Yes 1.00E-02 0.2 0.504 864 | 75.1 76.1 75.5
ResNet18 |Regression-Based No 0 0 0.236 826 | 450 | 488 | 46.3
ResNet18 6-Class No 0 0 0.935 753 | 48.0 | 484 | 481

Figure 3: Best Models for 6-Class, 3-Class, and Regression-Based Classification Tasks

training sets have the same proportion of images for each class, our overfitting problem can be attributed from having
insufficient training data. Thus, we doubt that tuning hyperparameters will fix the overfitting problem alone. Nonetheless, for
the 3-class and regression-based tasks, we still tried L2 regularization (regularization constants le-2 and 1le-3 respectively)
and dropout (rate of 0.2) for the last one or two fully connected layers for our transfer learning models. By making the model
less complex, regularization has to potential to reduce overfitting to the training set. By randomly dropping the weights of
different neurons, dropout essentially averages between different neural networks, thus producing regularization effect.

From running 5 experiments, weighed sampling, weight decay (1e-3), and dropout (0.2) all degrade the performance of the
ResNet18 and MobileNetV2 models. Weighed sampling essentially trains less using the Healthy class and training more on
the minority classes. But since there are very few images in the minority class, this makes the model overfit more to those
minority examples in the training set, but with so few examples, it is difficult to generalize well. Regularization showed
no significant effect, and dropout might have resulted in a undertrained model since the performance on the training set
decreased significantly while not generalizing well to the validation set.

We ran 14 experiments on ResNet18 and MobileNetV2 for the 3-class regression task. Weighed sampling degraded validation
metrics for MobileNetV2, and it traded for higher recall and F1 scores with lower precision and accuracy for ResNet18.
Dropout of 0.2 improved all validation metrics for ResNet18 while decreasing them all for MobileNetV2. Regularization
seems to show slightly positive results for both models: MobileNetV2 (1e-2) and ResNet18 (1e-3).

5.3 Best Models and Discussion

Finally, for the three separate tasks, the models in Figure 3 performed the best on the validation set. While the accuracies are
comparable between the validation and test set, the macro averaged F1 scores are much worse for the test set. Upon closer
examination, the individual F1 scores are extremely low for minority classes: classes 3 and 4 have F1 scores of 0% for the
regression-based classification task and 16.7% and 0% for the 6-class classification task, and the other non-Healthy classes
have approximately F1 scores of 60-75%. The confusion matrix and breakout of the classes in each task looks similiar to
the charts in Figure 2. (More detailed discussion exists in the Appendix Section 8.6.) Overall, this reinforces our previous
hypothesis that the key problem lies in not having sufficient data for the minority classes, and thus hyperparameter tuning
alone without getting more data will likely not make the models more generalizable.

6 Conclusion/Future Work

In the one-through approach, the FCNN did not perform well: it lacks complexity (hidden layers and units), and we were
restricted to use a small dimension (64x64) to keep the input size (and number of parameters) manageable. With a small
training set, the custom-made CNN could not learn the diseased pattern well enough for the classification task. The ResNet18
transfer learning model did the best since 1) the pretraining provided prior weights/knowledge helpful for our classification

5

task 2) the 18-layer depth allowed for decent amount of complexity and learning of features. In the two-task approach,
the 3-class classification task is a simplification of the original 6-class task, and since this reduces the insufficient data
problem for minority rust level classes, we see increased accuracy (75.3% to 86.4%) and macro averaged F1 scores (48.1%
to 75.5%) using best performing models on the test set. While regression-adopted ResNet18 model has higher accuracy on
the regression-based task than the 6-class task, but it has slightly lower F1 score.

While we experienced problems of overfitting and class imbalance, the largest problem is the lack of training data. This
results in decent accuracy but low F1 scores (especially for minority classes) in validation and test sets. While we tried
training with weighed sampling, regularization, and dropout, we did not expect them to yield significant improvements.

Had we have the resources, we would collect more images from minority classes. Trying more hyperparameters or new NN
architecture without more data will likely result in futile efforts. With more computation power, it would also be a good idea
to use a larger resolution than 224x224. Additionally, since the diseased spots often take up very small portion of the leaf,
performing segmentation first might be useful for the classification task. Finally, after collecting more data for the minority
class, we would be interested in integrating the two tasks into one continuous one, such that each of the two tasks run on the
set of the images and the outputs from them are combined to generate a single classification label.

7 Contributions

The CS230 PyTorch Vision example!”) provided the starter code for this project, although significant changes were made for
1) separate data processing procedures for each of the three classification tasks, 2) modification of the the fully connected
neural network, 3) customized implementation of AlexNet, 4) transfer learning with AlexNet, ResNet18, and MobileNetV2,
5) evaluation metrics, 6) implementation of weighed sampling, and 7) hyperparameter tuning.

8 Appendix

8.1 Picture Examples of the Six Coffee Leaf Conditions

: ot
(dRL3 (e)RL 4 () RSM

Figure 4: Sample image from RoCoLe

8.2 Activation Functions

ReLu(z) = max(0, 2)
ReLu6(z) = min(max(0, 2), 6)

2 . eWITx(i)
, (and in our context =

e IR

SoftMax: g(z); =

8.3 Neural Network Architecture Details

The follow section contains NN Architectures of models used in this project.

True Label

Layer | Name size__|Filter|Channel| Stride | Padding | A Layer | Name size _|Fitter|C Stride | Padding
Input Image 224x224x3 | - . . - . Input Image 224x224x3 | - R
1 ConvaD | 55x55x24 [11x11] 24 4 2 ReLu 1 Conv2D 11x11| 96 4 2 ReLu
- | MaxPooling | 27x27x24 | 2x2 | 24 2 - | MaxPooling | 27x27x96 | 3x3 | 96 2 - -
2 Conv2D | 27x27x42 | 5x5 | 42 1 2 ReLu 2 ConvaD | 27x27x256 | 5x5 | 256 1 2 ReLu
- | MaxPooling | 13x13x42 | 22 | 42 2 - - - | MaxPooling | 13x13x256 | 3x3 | 256 2 - B
3 Conv2D 13x13x74 | 3x3 | 74 1 1 Relu 3 Conv2D | 13x13x384 | 3x3 | 384 1 1 RelLu
. Max Pooilng 6x6x74 2 74 2 . 4 Conv2D 13x13x384 | 3x3 384 1 1 Relu
4 Conv2D 6x6x148 3 148 1 1 ReLu 5 Conv2D 13x13x256 | 3x3 256 1 1 Relu
Max Pooling Bx6x256 3x3 256 2 -
Max Pooling | 3x3x148 | 22 | 148 2 . T 2006 - - - - "
5 FC 600 - - - - Relu 7 FC 4096 - - - - Relu
Output FC 200 - - - - SoftMax_ | |Output FC 1000 - - - - SoftMax
(a) AlexNet-Inspired CNN Architecture (b) AlexNet Architecture Adopted for 224x224 Inputs
Layers Size Activ Input | Operator | Output
Input Image | 64x64x3 - - -
tayert T 3000 | heiamoo 3000 R | hxwxk | Ixlconv2d,ReLUG | hxw x (tk)
Layer 2 1000 RelLu hxwxtk | 3x3 dwise s=s, ReLU6 ': x ¥ x (tk)
Layer3 | 200 Rely Box % xtk | linear Ix1 conv2d B x i
Output 6 SoftMax
(c) Fully Connected Neural Network (d) Bottleneck Residual Block for
Architecture MobileNetVv2?
by o] Wy | e | Sl | Dipe | Sl Input | Operator [t]| ¢ |nls
smlH 2242 x 3 conv2d - 32 |12
wovdx | $6x%6 |[3as] [‘.w- - , 112; x 32 bottleneck 1 16 11
[3aes [|| 36 > 112° x 16 bottleneck 6 24 2|2
PRI P : 562 x 24 bottleneck | 6 | 32 |3 |2
emix | 2w || S | | Siaas) 3128 | x - 282 x 32 bottleneck | 6 64 4|2
- —1- - 5 3 142 x 64 bottleneck |6 | 96 |3 |1
covtx | wte ([22 o [2 1256 | 36 142 x 96 bottleneck | 6 | 160 | 3 | 2
- — - e e B 72 x 160 bottleneck | 6 | 320 | 1 |1
s pasa] g |[sasa]y [5].3 [s |« [s].3 72 %320 | conv2d Ixl | - | 1280 | 1 |1
S B ‘;L"I“mkm'm""“ Ixk. 208 7? x 1280 | avgpool 7x7 | - - 1| -
FLOP 18P | 36xI0 T WP | 6P N3P 1 < 1 x 1280 | conv2d Ix1 - k -
(a) ResNet18 Architecture!®! (b) MobileNetV2 Architecture!'?
Figure 6

8.4 Results: Confusion Matrix and Classification Report

Since we have ran 5 baseline models for the 6-class classification task, 5 baseline models and 14 experiments for the 3-class
classification task, and 3 baseline model and 5 experiments for the regression-based classification task, it will be unrealistic
to include all the confusion matrices and classification reports here. However, since many of them share similar patterns, we
will include a few additional examples here.

According to Figure 7.1.a, most of the incorrect labels are either along the green diagonal, in the last row, or in the last
column. Incorrect labels near the green diagonal makes sense since it might be difficult to separate out the different rust level
given their similarities. Mislabeling in the last row and column indicates that we are misidentifying another class as RSM,
and we are misidentifying RSM as another class. This pattern seems to follow that RSM is a minority class with only 30
examples in the validation set (meaning the training set also has a low proportion of RSM examples). Additionally, we again
see inaccurate labeling seems to correlate inversely porportional to the number of (training) examples, in Figure 7.1.b and
7.2.b. All of this suggests that we are insufficient amount of training data, and leads to low F1 scores despite accuracy being
approximately 80%.

Predicted Label
2 S & & & &
n W@ om om om om |_ciass_[procision] Recall | F1 | support| e Class__|Precision| Recall | F1_ | Support
2 0 944 95.8 95.1 142 - - -
RLY 400 . 600 000 000 600 1 79 754 736 61 0 926 97.2 948 142
o 2 548 | 586 | s67 | 20 - - 1 86.7 85.8 86.3 102
R2 Q00 60 1700 S® 000 100) 3 250 18.2 211 " - 2 66.7 533 59.3 30
: A R 1.0 & o Ace 881 | 278
RO 000 100 500 200 000 300 “ 5 64.3 60 62.1 30 ; “ ur J
© Accur 799 218 “ | Macro Avg 82.0 78.8 80.1 278
R4 000 000 200 00 300 000 MacroAvg | 684 613 639 218 bl < b) 'I Weighed Avg| 87.5 88.1 87.7 278
20 Weighed Avg| 795 79.9 795 2718 ®) ification Report: Th Classification
RSV 400 500 200 100 000 1880 ° (b)Cl reslfcats mu‘llasl:ofzuv;mn Baseline R 118 Model, Validation !
(a) 1. Six-Class Classification Task ResNet18 Baseline (b) 2. Three-Class Classification ResNet18 Baseline

Figure 7
7

8.5 Baseline and Experiment Metrics: Loss, Accuracy, and Macro Averages Precision, Recall, and F1

Tuning Training

Six-Class

4.07E-02

910227/ 831 fenn 0876 | 698 | 624 | 648 | 631 |1593| 403 | 342 | 334 | 329
resnet | Yes 451602 | 955 | 80.1 | 794 | 797 [0204] 827 | 689 | 545 | 559 || custom | 851e2 | 981 | 953 | 96.3 | 957 |1518) 594 | 479 | 428 | 44
mobilenet | Yes 336602 | 97.7 | 97.7 | 97.7 | 976 [0.216| 831 | 718 | 597 | 63 alexnet | 376602 | 987 | 95 | 968 | %4 |1.105| 734 | 609 | 599 | 60
resnet 1.00E-03 190602 | 985 | 789 | 785 | 787 [0.181/ 83.1 | 69
resnet 02 |8396-02| 908 | 53 | 545|536 |0244| 81 | 686
(a) Regression-Based Classification Task Experiments (b) Six-Class Classification Task Baseline
ﬂrm Validation
™ Weighod i oo lo-w«n Loss | Accur | Prec | Recatt | F1 | Loss | Accur | Prec Recail F1
fenn Baselne 5.66E-01 778 80.7 709 742 1 55 489 479 484
alexnet Baseine 3.25€E-02 98.9 97.7 98.3 98 0.702 835 774 77.2 76.9
resnet Baseine 3.89€E-02 98.7 97.8 98.3 98 0.52 88.1 82 78.8 80.1
custom Baseline 348e-2 994 99.3 98.5 98.9 0972 705 63 636 63.1
Baseine 165e-2 99.3 98.3 994 984 | 0464 | 878 828 794 80.8
mobilenet Yos 1.40E-02 996 996 99.7 996 0.698 874 843 76.6 791
resnet Yes 1.55€-02 996 995 996 996 071 878 81.7 809 81.2
mobilenet 1.00E-03 1.68E-02 995 989 989 989 0.467 899 90.8 786 82
resnet 1.00E-03 1.20E-02 995 99.1 99 9.1 0.535 888 869 786 814
mobilenet 1.00E-02 221E-12 993 989 99 989 0.464 899 909 793 828
resnet 1.00E-02 2.40E-02 996 994 988 99.1 0.385 878 805 81.1 80.7
mobilenet 02 3.14E-02 98.9 98.3 98.1 98.2 0.594 87.1 822 785 799
resnet 02 8.30E-03 995 98.6 993 9 0.668 896 855 816 832
resnet Yes 'me 02 152602 | 99 | o908 | w | 906 | 0624 | 881 83.1 80.4 s.
resnet 1.00E-02 02 1.26E-02 992 99.1 98.1 986 0512 899 862 813 831
resnet 1.00€-03 02 1.87€E-02 92 989 984 986 0556 888 841 793 812
resnet Yos 02 3.76E-02 L L 9.1 L 0.729 874 816 796 804
resnet Yes 1.00€E-03 1.94E-02 94 94 Lol 994 0.681 892 848 805 823

(c) Three-Class Classification Task Experiments
Figure 8

8.6 Deciding the Initial Hyperparameters
The implementation was modeled after the CS230 PyTorch Vision example(”). Since the initial training error was high, we
used a higher epoch number of 30 (instead of 10) to allow for longer training, and learning rate was decreased to le-4. Since

we have high bias, we did not use dropout because we wanted to fit the training set well first. The batch size of 32 was kept
the same as the PyTorch example.

9 Code Access

The full code repository can be viewed here: https://github.com/shellydeng/cs230-project-coffee-leaf-disease.

10 References

1) Buda, Mateusz, et al. “A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks.” Neural
Networks, Pergamon, 29 July 2018, www.sciencedirect.com/science/article/abs/pii/S0893608018302107.

2) Fuentes, Alvaro, et al. “A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests
Recognition.” MDPI, Multidisciplinary Digital Publishing Institute, 4 Sept. 2017, www.mdpi.com/1424-8220/17/9/2022.

3) He, Kaiming, et al. “Deep Residual Learning for Image Recognition.” Deep Residual Learning for Image Recognition -
IEEE Conference Publication, 27 Dec. 2016, ieeexplore.ieee.org/document/7780459.

4) Krizhevsky, Alex, et al. “ImageNet Classification with Deep Convolutional Neural Networks.” ResearchGate, Jan. 2012,
www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks.

5) Krizhevsky, Alex, et al. “One Weird Trick for Parallelizing Convolutional Neural Networks.” ArXiv.org, 26
Apr. 2014, arxiv.org/abs/1404.5997.

6) LeCun, Yann, et al. “Gradient-Based Learning Applied to Document Recognition.” Gradient-Based Learning
Applied to Document Recognition - IEEE Journals amp; Magazine, Nov. 1998, ieeexplore.ieee.org/document/726791.

7) Nair, Surag, et al. CS230-Stanford CS230 Code Examples, (2019), GitHub repository, https://github.com/cs230-
stanford/cs230-code-examples/tree/master/pytorch/vision

8) Orozco, Ismael, and Maria E. Buemi. “A Study on Pedestrian Detection Using a Deep Convolutional Neural
Network.” A Study on Pedestrian Detection Using a Deep Convolutional Neural Network - IET Conference Publication, 20
Apr. 2016, ieeexplore.ieee.org/document/7777677.

9) Parraga-Alava, Jorge, et al. “RoCoLe: A Robusta Coffee Leaf Images Dataset for Evaluation of Ma-
chine Learning Based Methods in Plant Diseases Recognition.” Data in Brief, Elsevier, 19 Aug. 2019,
www.sciencedirect.com/science/article/pii/S2352340919307693.

10) Paszke, Adam, et al. “Automatic Differentiation in PyTorch.” OpenReview, 28 Oct. 2017, openre-
view.net/forum?id=BJJsrmfCZ.

11) Pedregosa, Fabian, et al. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research, 1 Jan.
1970, jmlr.csail.mit.edu/papers/v12/pedregosalla.html.

12) Sandler, Mark, et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.” MobileNetV2: Inverted
Residuals and Linear Bottlenecks - IEEE Conference Publication, 18 June 2018, ieeexplore.ieee.org/document/8578572.
13) Sorte, Lucas Ximenes Boa, et al. “Coffee Leaf Disease Recognition Based on Deep Learning and Texture Attributes.”
Procedia Computer Science, Elsevier, 14 Oct. 2019, www.sciencedirect.com/science/article/pii/S1877050919313468.

14) Wallelign, Serawork. “An Intelligent System for Coffee Grading and Disease Identification.” Research Gate, Feb. 2020,
www.researchgate.net/publication/339946616_An_Intelligent _System_for_Coffee_Grading_and_Disease_Identification.

