
Detecting Cyberbullying in Online Forums

Hailey (Han Bit) Yoon
Department of Computer Science

Stanford University
hbyoon@stanford.edu

Abstract

Social networking platforms allow anyone to share one’s opinions and views on
various topics. Cyberbullies abuse this fact to attack another user/group online by
posting offensive comments. This research presents a tool that can closely monitor
and detect insults, sexual harassment, and other negative statements by utilizing
Long-Short-Term-Memory (LSTM) and the optimization techniques such as data
augmentation, hyperparameter tuning, and dropout.

1 Introduction

Social networking platforms have made it easy for us to communicate easily with family, friends, and
others. It allows one to freely share one’s opinions and beliefs on a public forum. These shared posts
may be about interests, local affairs, events, politics or religion, people, and a wide variety of other
topics. Unfortunately, some users encounter cyberbullying after sharing their opinion online. One
could be bullied for one’s religious or political beliefs, race or skin color, body image, if you have a
mental or physical disability or for no apparent reason whatsoever. The effects of cyberbullying can
result in mild distress to the most extreme cases like self-harm and suicide [3]. Therefore, offensive
comments must be closely monitored and notify the administrator to take appropriate action.

This project aims to develop a deep learning architecture for text classification in terms of online
hate speech, comment attacking someone based on his or her race, religion, ethnic origin, sexual
orientation, and more. It mainly focuses on detecting offensive comments written in English. This
project’s approach employs a neural network solution composed of different models using Long-Short-
Term-Memory (LSTM). The optimization techniques such as data augmentation, hyperparameter
tuning, and dropout are used to achieve more accurate and less biased models.

2 Related Work

In "Detecting Online Hate Speech Using Context Aware Model" by Lei Gao and Ruihong Huang,
they presented the importance of utilizing context information for online hate speech to improve
hate speech detection accuracy. Gao and Huang had to gather data manually because all the publicly
available hate speech annotated datasets do not contain context information. Once they trained
their models with a dataset with more clear background information, it was easier for the algorithm
to determine if the comment includes a vicious insult towards someone [4]. This method avoids
mistakes, such as classifying a sarcastic joke as an insult based on the context. Also, "Detecting
Offensive Language in Tweets Using Deep Learning" by Georgios Pitsilis, Heri Ramampiaro, and

,



Helge Langseth successfully distinguished racism and sexism messages within tweeter posts by
utilizing an ensemble of Recurrent Neural Network (RNN) classifiers with various features associate
with user-related information [2]. Despite these enhanced models in hate-speech classification, I
believe the offensive comments detection can be improved by including new slangs and cultural
expressions to determine what is offensive and not.

3 Dataset and Features

Figure 1

This research uses a collection of more than 28K hate speech tweets, which is made available by Mai
ElSherief, Shirin Nilizadeh, Dana Nguyen, Giovanni Vigna, and Elizabeth Belding (2018); it also
uses additional hate speech tweet database created by Waseem and Hovy (2016). These twitter
datasets are available as CSV files; the files are named by the topic of offensive comment (Class,
Sexual Orientation (sexorient), Disability, Gender, Ethnicity (ethn), Nationality (nation), Religion
(rel), Archaic). As shown in Figure 1, both datasets are labeled in three features: Extremely
Offensive, Mildly Offensive, Neutral. These are assigned a unique variable representing a user’s
tendency towards posting Extremely Offensive, Mildly Offensive, and Neutral content.

4 Methods

The first method used in this experiment was pure LSTM. However, the pure LSTM’s runtime was
slow, and its accuracy rate was low. Inspired by the work by Pitsilis, Ramampiaro, and Langseth
(2018), the experiment combined various LSTM models, which improved the performance of
offensive comment detections. Then, the project utilized CNN LSTM for faster execution; the final
approach was to use a bidirectional LSTM with CNN for a shorter runtime and higher accuracy. Its
pipeline is shown in Figure 2.

Figure 2

Figure 2 illustrates the pipeline of this project. The program first took the input of tweet texts from
Twitter, and then it began pre-processing. Here, the pre-processing phase labeled each data based on
the comment’s offensive level. The pre-processed input entered bidirectional LSTM for training and
hate classification, and then it generated output prediction into three features introduced before: (1)
extremely offensive, (2) mildly offensive, or (3) neutral. The codes for this can be found at
https://github.com/hay318/Offensive_Comment_Detection.

2

https://github.com/hay318/Offensive_Comment_Detection


5 Experiments / Results / Discussion

Figure 3

5.1 Predicting Offensive Speech in Two datasets

This study measured the prediction performances of offensive comment detection against two
baselines, shown in Figure 1. I made several observations. First of all, the bidirectional LSTM with
CNN outperforms the baselines on the Waseem and Hovy dataset. However, it underperforms them
on the ElSherief dataset. I suspect this is caused by the baseline’s external information (user
information and metadata). By manually inspecting some failed predictions, I noticed that it is
particularly challenging even for a human to determine if one’s being sarcastic or genuinely making
that comment without any background information. Figure 3 shows how detecting "Mildly
Offensive" has the highest error rate; it is more difficult to determine what is offensive but not in an
extreme way.

5.2 Determining hateful contents

I noticed that offensive slang words or modern jokes are correctly scored higher. However, I
observed that word comments related to racism are misclassified because of the data sampling bias.
Some racist tweet texts use Islamic or Muslim related terminology, which is falsely classified as
racist comments. On the other hand, Asian related racist jokes got labeled neutral due to the language
barrier. For instance, one would spell out offensive Chinese words using English alphabets and
include in one’s comment, and this would be classified as neutral because the offensive keywords
spelled (spelled out Asian words) got labeled neutral because the offensive part is not written in
English.

6 Conclusion / Future Work

With the increasing number of social media users, it is crucial to maintain an online environment
where everyone feels comfortable and safe. The project successfully built an algorithm that detects
cyberbullying (offensive comments) in online forums using a bidirectional LSTM with CNN. The
current model supports English words only, but it would be interesting to build various language
modules for this tool; I can imagine how it will be structured differently, given how each language
has its own culture and standard of offensive comments. Applying the current algorithm to Spanish
tweets will be my next goal, then eventually expand it to different languages such as Japanese and
Arabic.

3



References

[1] C. Khatri, B. Hedayatnia, R. Goel, A. Venkatesh, R. Gabriel, and A. Mandal, “Detecting Offensive Content
in Open-domain Conversations using Two Stage Semi-supervision,” thesis, 2018.

[2] G. K. Pitsilis, H. Ramampiaro, and H. Langseth, “Detecting Offensive Language in Tweets Using Deep
Learning,” thesis, Trondheim, Norway, 2018.

[3] Get Safe Online. [Online]. Available: https://www.getsafeonline.org/social-networking/online-abuse/.
[Accessed: 31-Oct-2020].

[4] L. Gao and R. Huang, “Detecting Online Hate Speech Using Context Aware Models,” thesis, 2018.

4


	Introduction
	Related Work
	Dataset and Features
	Methods
	Experiments / Results / Discussion
	Predicting Offensive Speech in Two datasets
	Determining hateful contents

	Conclusion / Future Work

