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Abstract

Injuries from road traffic accidents is now the eighth leading cause of death globally,
claiming about 1.35 million lives every year.! What if one could predict the likelihood of
road traffic accidents to induce drivers to avoid hazardous road segments? In this project, we
show how deep learning can be used to provide accurate high-resolution road traffic accident
predictions in the form of an hourly road segment risk map.

1 Introduction

Road traffic accidents claim about 1.35 million lives every year, with 50 million more left injured
or disabled. It is the leading cause of death globally for individuals between the age of 5 and 29.
Despite it being an international priority, the United Nations sustainable development goal of
halving road traffic accidents by 2020 has not been met. In fact, the slight decline in the death
rate in recent years has not kept pace with the increasing absolute number of road accidents
coming from rapid population growth and urbanization. This growing human and economic
burden urges us to think about new approaches and solutions.

What if one could predict the likelihood of road traffic accidents to induce drivers to avoid
hazardous road segments? One could think of introducing such predictions in modern GPS
navigation applications where drivers could receive routing plan suggestions that avoid accident
prone road segments. In this project, we build a deep learning model to produce such accurate
high-resolution road traffic accident predictions for the city of Montreal. Our Multilayer Per-
ceptron (MLP) model takes as inputs meteorological, spatial, temporal and geometric features
of each road segment to hourly predict the binary outcome of whether or not an accident will
occur on any given road segment.
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2 Related Work

The problem of predicting road traffic accidents can be formulated in several ways. Depending
on the spatial and temporal resolution of an observation, one can define the exercise as a clas-
sification or regression problem. In fact, if an observation is defined on a road segment at the
hourly frequency, it is more convenient to perform a binary classification exercise in which an
accident is treated as a Bernoulli random variable. In contrast, if an observation is defined on
a coarser spatial unit or at a lower frequency, one can instead perform a regression exercise in
which the model will predict the number of accidents that will occur within the specified area
and time interval.

Depending on intended use of the model, any of the two formulations could be preferred, but for
our purpose, it is more convenient to formulate the problem as a binary classification one since a
navigation application would need relatively high-resolution predictions to produce optimal
routing plans at any given moment. In that sense, Hébert, Guédon, Glatard and Jaumard (2019)
is closest to what we are doing. In fact, they use a Balanced Random Forest (BRF) model with
similar data sources to predict road traffic accidents in the city of Montreal. With this model,
they achieve a recall of 85% and precision of 28%. In this project, we seek to improve upon this
by instead using a deep architecture.

In contrast, most previous work on predicting road traffic accidents has been formulated as a
regression problem. For instance, Chen, Song, Yamada and Shibasaki (2016) use human mobility
data from mobile phone GPS records to predict traffic accident risk on a 500 by 500 meter grid in
Japan, where risk is defined as the sum of the severity of accidents that occur in the area at a
given hour. Using a deep architecture, they achieve a root mean-square error of unity. The main
contribution of this article is to introduce human mobility data as a model feature to substitute
for detailed road traffic data, which is typically harder to access. Najjar, Kaneko and Miyanaga
(2017) also introduce a novel source of data to predict traffic accident risk by exclusively using
satellite imagery together with a Convolutional Neural Network (CNN) to predict road traffic
accidents in New York City and Denver. With different image dimensions and training strategies,
they achieved a precision within the range of 74% and 78%. This is convincing evidence that
visual features encoded in satellite imagery can accurately predict road traffic accidents. Finally,
formulating the problem as a more standard regression exercise, Yuan, Zhou and Yang (2018) use
a Convolutional Long Short-Term Memory (ConvLSTM) Neural Network to predict the daily
number of accidents on 5 by 5 kilometer grid in Iowa. Their main contribution is to introduce a
rather novel architecture for this task that accounts for long dependencies in both the spatial and
temporal dimensions. With this, they achieve a root mean-square error lying between 0.08 and
0.14 for different configurations of their model and data.



3 Data

In this project, we will need data on (i) road traffic accidents, (ii) road segments, (iii) traffic lights
and (iv) hourly local weather estimates. For (i) to (iii), the city of Montreal provides three public
datasets on road traffic accidents, road segments and traffic lights. For (iv), the government of
Canada provides publicly available hourly weather information measured at several weather
stations in or near Montreal.

(a) Road traffic accidents (b) Road segments

3.1 Road Traffic Accidents

This dataset provided by the city of Montreal records every single road traffic accident that
occurred between 2012 and 2019 in Montreal.? For each accident, the dataset contains information
on the date, time and location of the event as well as additional information on injuries, casualties,
vehicles involved and road conditions, which will not be used. The dataset contains a total
of 173,661 accidents, plotted in Figure 1a, for which the date, time and location of the event is
observed.

3.2 Road Segments

The city of Montreal also publicly provides a dataset containing the line strings of every road
segment defined by intersections in Montreal.> For each road segment, the dataset contains
information on the road type and direction. This dataset contains a total of 47,567 segments,
plotted in Figure 1b. From this data, we calculate additional road segment features such
as segment length and sinuosity, the area of the segment’s convex hull and the number of
intersections with other segments.
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3.3 Traffic lights

The last dataset we obtain from the city of Montreal contains the geographic location of all traffic
lights in the city.* This data is used to count the number of traffic lights within a 100 meter radius
of each road segment.

3.4 Weather

This dataset provided by the government of Canada contains hourly weather information
measured at different weather stations in Canada.” More precisely, each station records the
temperature, dew point, relative humidity, wind direction and speed, visibility, atmospheric
pressure and other atmospheric phenomena such as snow, fog and rain at every hour. In total,
there are 12 weather stations located within a radius of 50 kilometers of Montreal reporting at an
hourly frequency. Weather conditions will therefore be interpolated between weather stations to
obtain estimates at each road segment.

3.5 Combination

Combining the first three datasets, we obtain total of 173,452 positive examples, in which an
accident occurred. As previously mentioned, since our data spans a period of 8 years and
there are 47,567 road segments in Montreal, this amounts to a total of over 3.3 billion possible
negative examples. Including all of those negative examples in the training, development
and test sets would lead to a severe class imbalance problem. Therefore, we instead use a
sampling approach by which we randomly sample accident records from the set of positive
examples, randomly alter the associated date and time, and if those resulting examples are not
already within the set of positive examples, we include them in our dataset. Repeating this
procedure until there are enough negative examples (i.e. as much as the number of positive
examples) circumvents the class imbalance problem. Combining the resulting dataset with
weather information, we obtain a total of 157 normalized features with 841,861 examples, which
we divide in the training, development and test sets with fractions 90%, 5% and 5%, respectively.
Besides what is mentioned above, the features include binary variables for the month, week, day,
weekday and hour of the examples as well as the elevation, zenith and azimuth of the sun given
their location, date and time.

4 Methods

In this project we build a Multilayer Perceptron (MLP) with six hidden layers and 53,217 trainable
parameters. Since we formulate the problem as a binary classification task, we use the binary
cross-entropy loss function with a sigmoid activation function for the output layer. Each hidden
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layer is activated with the ReLU function after which we apply batch-normalization. More
precisely, here is a description of each layer of the model:

—

. Input layer with 157 features.

N

. Dense layer of 256 units — ReLU — batch-normalization — dropout with probability 0.5.
3. Dense layer of 256 units — ReLU — batch-normalization — dropout with probability 0.4.
4. Dense layer of 128 units — ReLU — batch-normalization — dropout with probability 0.3.
5. Dense layer of 128 units — ReLU — batch-normalization — dropout with probability 0.2.
6. Dense layer of 64 units — ReLU — batch-normalization — dropout with probability 0.1.
7. Dense layer of 32 units - ReLU — batch-normalization.

8. Dense layer of 1 unit — sigmoid.

5 Discussion

To train the above model, we use mini-batch gradient descent with mini-batches of size 128 and
the ADAM optimizer with a learning rate of 1x10~3. After 100 training epochs, we obtain the
confusion matrix in Table 1. This yields a recall of 68.9% and an area under the ROC and PR
curve of 63.7% and 61.9%, which is not quite as high as what is achieved in Hébert et al. (2019);
85%, 92% and 69%, respectively.

Table 1: Confusion matrix

True/Predicted | Negative | Positive
Negative 24.8% 24.3%
Positive 16.6% 34.2%

6 Conclusion

The performance of the above model is unfortunately not satisfactory. I believe there are at
least three reasons why. First of all, the random sampling solution to the severe class imbalance
problem might no suffice. In fact, since correctly predicting accidents is so critical to this
task, it could be that one should use relatively more negative examples, but instead modify
the binary cross-entropy loss function in order to penalize deviations from positive examples
proportionally more. This solution will be explored in future iterations of this project. Second,
weather is measured with a substantial amount of noise in our data. In fact, we are linearly
interpolating weather conditions at each point of the city of Montreal from only 12 weather



stations within a radius of 50 kilometers. It should be no surprise that weather conditions
are not linear in space, and instead using data generated from a meteorological model could
increase the performance of our model if weather is a critical predictor of road traffic accidents.
Finally, using alternative features such as satellite images or road traffic data could be useful in
predicting traffic accidents. In fact, satellite images and traffic data could encode a vast amount
of information on how hazardous roads can be.
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