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Abstract

In this project, a set of different modeling methods were experimented for the multi-
label classification task of predicting odor of molecules from chemical structures.
The dataset was investigated and different methods of featurization of SMILES
string were considered. The performance of fully connected neural network, graph
convolutional network, Chemception, ChemBERTa, and classic machine learning
model of random forest and label powerset transform were compared, where the
convolutional network with the input of circular fingerprint and ChemBERTa model
presented most promising prediction results with Jaccard index around 0.330.

1 Introduction

The task of predicting properties of a molecule from its chemical structure is crucial for a lot of
applications such as drug discovery and material design. The accurate prediction can potentially avoid
a long and costly discovery process by providing useful property of a molecule such as its bioactivity,
toxicity or melting point. Recently, deep learning has become a powerful tool for modeling molecules,
especially with certain models such graph convolutional network and its derivatives. However, little
attention was been given to the fragrance and flavor industry. It is potentially very promising to
predict the smell from the odorant molecules, the actual building blocks of all fragrance. Historically,
people tried to predict the odors based on the functional group of the molecules but there is only a
very limited number of odors can be predicted this way and some odorants having the same functional
groups can smell very differently.1
Conventionally, most of the public accessible data sets presented the compounds as SMILES string
(Simplified Molecular-Input Line-Entry System),2 a standard method for encoding structures into sets
of ASCII characters (string) to be digitally recognized, and provide the multiple odors of a particular
molecule in the form of a sentence with tags of manually classified tags. Therefore, the task could be
considered as a multi-label classification problem with input as SMILES string and output as the tags
of odors.
For this project, a main emphasis was the experiments of different methods of representing the
chemical compound from their structural information (SMILES strings). Several published different
approaches for featurization of encoding chemical structures were implemented and considered,
including the chemical fingerprint, graph convolution network, BERT-like model, and “grid image”.
Upon the completion of appropriate preparation of data, some pretrained models, including both
shallow and graph models, were utilized and adapted for the classification task, where the performance
was evaluated and discussed.
This was a shared project between CS230 and CS229, followed and approved by both class project
policies. There were both shallow and deep models experimented in this project and the parts
of this project could be arbitrarily divided into: Data augmentation, Chemception model, Graph
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convolutionally network for CS229; ChemBERTa model, Fully connected multi-label classifer, Scikit-
multilearn models for CS230. By the nature of these two classes, most of work in task setup, datasets
investigation, infrastructure were shared. The report submitted for both classes followed similar
outline to include all the necessary details.

2 Related work

For the featurization of chemical structures, there were several commonly adapted in the studies of
prediction of molecular property. The open-source DeepChem library provided implementations of
some featurizers,3 including circular fingerprint transformers and encoding for graph convolutions.
There were other approaches for representing molecules: Chemception project reported an inception-
model inspired deep convoluitonal network for the prediction using the 2D images of molecules,4
which was a much different approach without insight in the chemistry domain; ChemBERTa presented
a collection of trained BERT-like models of transformers on molecular property predictions tasks.5
The performance of these models was highly depended on the features of the chemical structures
present in the dataset, such as organic molecules or complex molecules. For models with the input
of some pre-processed conversion from SMILES strings, some data augmentation methods were
reported with main strategies as the enumeration6 or randomly generation SMILES string.7 In this
project, these methods of different featurizations and modeling were adapted and experimented.

3 Dataset and Features

For this project, the open-source Leffingwell PMP database was investigated for modeling where
4796 chemical molecules were represented in the SMILES string and the olfactory information was
provided with manually classified sentence of odor labels. The occurrence of labels was not uniform
and the number of labels for molecules was could be various. The dataset was divided into train,
validation, and test set in a ratio of 70%:20%:10%.

Figure 1: Label Occurrence Distribution

Figure 2: Number of labels for each molecule
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For the evaluation for the prediction, it should be admitted that the description of odor could be
subjective and heterogenous based on personal experience and other factors. In this case, the
Tanimoto Similarity Score (Jaccard Index) was considered as an appropriate performance description
by calculating the average of sentence matching in the proposed 3 sentences (list of labels) between
the prediction and the ground truth sentences. In fact, the Tanimoto similarity score is also commonly
used to describe the chemical similarity between molecules.

Jaccard Index =
number of labels matched in sets

number of labels of union of predicted and truth sets
The labels in from the dataset were further converted into tokenized index to be recoginized by the
model. The labels of each molecule were accordingly converted into a one-hot-encoded format based
on the index-to-label map.

Figure 3: Index-to-label map

4 Methods

4.1 Featurization

4.1.1 Circular (Morgan) fingerprint

Circular fingerprint representation discovered local structural properties within a molecule by consid-
ering the neighboring atom relations. The experiment of multi-task classification with the circular
fingerprint featurizer originated based on the chemical insight that the most odor of molecules was
associated or provided with particular functional groups or molecular structures in these molecules.
For example, the aromatics compounds possessed distinctive perfumed smell from the conjugated
system. Circular fingerprints could be considered as an analog to convolutional networks because the
identical operations were applied locally to all the atoms and the global information was gathered and
combined in a pooling step. Therefore, the circular fingerprint was explored in this project because it
was generally more representative for structural information than other methods. However, a main
limit for this representation was that the circular fingerprint was unique for molecules so that data
augmentation would be difficult to apply. The implementation from Deepchem library of circular
fingerprint was used where the SMILES strings were converted and hashed into bit vectors, with the
algorithm described by David Duvenaud et al.8

4.1.2 2D molecular structure graph conversion

Converting the SMILES encoding strings of molecules into graphs was a common strategy in
molecular machine learning to exploit certain well-developed methods on fully connected network
training. With the open-source cheminformatics software RDKit, the SMILES strings were converted
a molecular descriptor of molecular graph and further encoded to an image with 3 channels. The
conversion was based on the Chemception method:4 given the RDKit mol. target, the atom number,
Marsilli-Gasteiger partial charge,9 and hybridization state were calculated and the 2D drawing
coordinates were computed and extracted to a coordinate matrix. The 2D molecular structure was
then mapped onto (80 × 80) grids (resolution of 0.5 Å), following the Chemception protocol.

Figure 4: 2D Molecular Grid Image
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4.2 Data augmentation

A noticeable challenge for machine learning study on molecular property was the limited size of avail-
able data sets. Training most conventional deep neural networks usually would require a relatively
vast number of data examples, such as for computer vision or language recognition. However, most
publicly available datasets for the properties of chemical molecules have samples from 4 thousands
(PDBBind 2017) to 22 thousands (QM8).10 The limited size of high-quality scientific data provides
much restriction on the choice of learning models. From this perspective, data augmentation method
on these datasets could be very promising for the training performance. For this project and dataset,
even though chemical fingerprint ensured a one-to-one correspondence between the fingerprint de-
scription and the molecule which would be difficult to generate more examples for training, one
molecule can however have multiple SMILES strings representation. Such fact had been explored
as a technique for data augmentation of a molecular dataset. Specifically, the SMILES for a given
molecule was obtained by traversing the atoms within the molecule with certain restriction7. Different
choice of atom orderings could generate different SMILES string for the same molecule. For exam-
ple, “CC(CC(=O)OC1CC2C(C1(C)CC2)(C)C)C” and “C1C2CCC(C)(C2(C)C)C1OC(=O)CC(C)C”,
“O1C(C)OC(C)OC1C” and “C1(C)COC(CC)O1” represented identical pairs of molecules.
Therefore, a new SMILES string representation was generated for each examples in the training and
validation set by: (i) Ranking and randomizing the index for atoms; (ii) Traversing the molecules in
the randomized index order; (iii)Iterating until a different SMILES string was generated. Although
the generation of a greater number of SMILES strings for a given molecule or even the enumeration
on randomized SMILES string could provide a much larger size of dataset, there were highly struc-
tural symmetric molecules possessing only two SMILES strings representation. Furthermore, the
number of different randomized SMILES strings for each molecule could be different, thus possibly
introducing a bias towards the model due to the under-representation for molecules that had a smaller
number of SMILES strings. The augmented dataset was pre-processed by the 2D image conversion
for Chemception model or transformer in the ChemBERTa model.

Figure 5: 2D Molecular Grid Images of Randomized SMILES String

4.3 Modeling

4.3.1 Multi-label classifier

A fully connected network from DeepChem library was experimented for the task of multi-label
classification, with the input as circular fingerprints. There were several hyperparameters for the
architecture of the network, including the number of layers, size of each layer, dropout rate, learning
rate and choice of activation functions. To optimize the hyperparameters, an implementation of
grid search optimization algorithm from DeepChem library was utilized to exhaustively compute
the optimum combination of hyperparameters. The performance metric for the optimization was
evaluated based on the Jaccard Index, considering the size of the intersection of the training set and
the validation set. The default Adam optimizer was used for the training and cross-entropy was set as
the loss function.

4.3.2 Graph convolutional networks

For graph convolution network modeling with input of circular fingerprints, the implementation
of the classical graph convolution model from Duvenaud, et al from DeepChem was used for this
project. These graph convolutions with a per-atom set of descriptors for each molecule and combine
the descriptors over convolutional layers. The architecture from the original study was followed
and adapted with experiment on hyperparameters. Batch normalization with batch size of 100 was
applied to the model, and ReLU was the activation function for all the hidden layers.
For convolutional networks with input of 2D “Grid” image (Chemception), a model with vgg19
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architecture was experimented and trained with implementation from fastai library.11 The optimal
learning rate was determined with the metrics as the multi-label Jaccard index. The models were
trained on the original dataset, and the double-size augmented dataset.

4.3.3 Scikit-multilearn Random forest Label Powerset

The performance of classic ML algorithms of Random Forest and Laber Powerset on the multi-label
classification task was discovered as a baseline comparison to the deep models. The implementation
from scikit-multilearn for these two models was experimented.12 For the random forest classifier,
the binary relevance method was applied to transform the multi-label classification into several
single-label separate binary classification using the random forest classifier. For the Laber Powerset
method, the multi-label problem was transformed to a multi-class problem with a single multi-class
classifier trained on all the combinations of labels in the training set (power set). A Gaussian Naïve
bayes was used as the base classifier.

4.3.4 ChemBERTa

ChemBERTa presented a collection of trained BERT-like models of transformers on molecular
property predictions tasks.5 To present a basic performance of the model, a pretrained tokenizer
and RoBERTa model from ZINC-250k dataset was fine-tuned for this task. The attention patterns
produced by the tokenizer could be visualized by the Bertviz tool.13

5 Results

The performance for the models described was measured in the top-3 Jaccard index and summarized
in the table below. The presented performance was resulted from the optimized best model for a
particular architecture.

Model Original Dataset Augmented Dataset
Fully Connected Classifier 0.286 -
Graph Convolutional Network Classifier 0.325 -
Chemception Model 0.247 0.268
Random Forest 0.221 -
Label PowerSet (Naïve Bayes) 0.242 -
ChemBERTa Model 0.317 0.318

6 Discussion

Among the modeling methods experiments, the graph convolutional networks with input of circular
fingerprint achieved the best performance. Such observation was consistent with the conclusion from
several molecular property prediction modeling studies that the graph models generally outperformed
the shallow models (RF, SVM). The nature of graph models provided opportunities for including
more details of molecular information in the featurization. However, the Chemception models with
vgg19 architecture did not perform well as expected. This could be resulted from the limited size of
input image examples even with the augmentation. Noticeably, the BERT-like model ChemBERTa
suggested very promising performance on the classification. Given the fact that the tokenizer and
model were transferred from pretrained model on much larger dataset, the performance would proba-
bly be more accomplished if hyperparameters could be better fine-tuned.
From the analysis on the dataset, the very imbalanced distribution of label occurrence suggested a
need for data resampling. However, the techniques of resampling on imbalanced multi-label datasets
had only been address recently and the performance of most of these methods greatly depended on
the traits of the multi-label datasets. For example, the synthetic minority over-sampling (SMOTE)
technique required insight on local data point distribution for considering the synthetic data point
generation sources.14 For this dataset, there was seemingly no reasonable method of quantitative
description for SMILES strings data point distribution with the experimented featurization methods
(e.g. circular fingerprint). The task of resampling on the imbalanced SMILES string dataset could be
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an emphasis for future work.
Another possible direction for the future work could be taking more molecular features into con-
sideration at the stage of the 2D image encoding. For this project, only the Gasteiger charges and
hybridization types were computed for molecules. Based on the nature of the dataset, there could be
other useful features such as the types of chirality for stereochemistry. For example, the inputs of
enantiomers and diastereomers could not be distinguished with the current featurization, where bias
will be introduced in the training. With more molecular details encoded, the classification results can
be better achieved.

7 Conclusion

In this project, a set of different modeling methods were experimented for the multi-label classification
task of predicting odor of molecules from chemical structures. The dataset was investigated and
different methods of featurization of SMILES string were considered. The performance of fully
connected neural network, graph convolutional network, Chemception, ChemBERTa, and classic
machine learning model of random forest and label powerset transform were compared, where the
convolutional network with the input of circular fingerprint and ChemBERTa model presented most
promising prediction results. The approach for data resampling on the imbalanced SMILES string
dataset and encoding more molecular features can be directions for future work.
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Appendix

Figure 6: Data Preview

Figure 7: Chemception Outline.4

Figure 8: Circular fingerprints generation algorithm8

Figure 9: Attention head view for tokenized SMILES string

The Hyperparameters of the best-model by grid search:
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Hyperparameter for multi-label classifier
Size of each layer 256, 512, 1024
Number of layers 1,2,3,4,5,6,7,8,9,10
Activation function (hidden layer) ReLU, sigmoid
Dropout rate 0.2, 0.5
Learning rate 0.01,0.001,0.0001

Hyperparameter for Fingerprint CNN
Width of channels for convolution layers [64,64], [128, 128]
Width of channels for atom level dense layer 64, 128
Dropout rate 0.2, 0.5
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