
 

Algorithmic Venture Capital 
Predicting valuation step-up multiple in venture backed companies through deep learning techniques 

 

Abstract—Venture capital plays an instrumental role in the modern         
American economy. Corporations such as Google, Apple, Facebook,        
Instagram, PayPal, Tesla, SpaceX, Airbnb, FedEx and Intel all         
received venture funding to enduringly grow into the iconic         
companies they are today. As of 2015, venture backed companies          
made up 17% of U.S. public companies, accounted for 44% of R&D            
spending and employed 11% of U.S. citizens [3]. Despite the          
unequivocal impact venture capital has on the United States, the          
process behind venture investment decisions remains manual,       
subjective and unsystematic.  

This paper sets out to explore whether venture capital can benefit           
from machine learning, particularly deep learning, to make        
investment decisions in a more scientific way. Specifically, we aim          
to predict the valuation step-up multiple in the subsequent         
financing round of venture backed U.S. companies. The primary         
dataset for our model comes from Pitchbook, a popular commercial          
dataset of company and funding information. We produced a         
regression-based model to utilize a fully-connected 10-layer neural        
network to encode features and predict the valuation step-up         
multiple. Results show that for the regression task of predicting          
company valuation step-up, deep-learning techniques meaningfully      
outperform statistical inference models such as linear regression in.         
However, non-deep learning models, such as random forest, appear         
to be better suited for such regression analysis. 

Keywords: fully-connected neural network, venture capital, 
regression, company valuation prediction 

I.  INTRODUCTION 
Venture capital is a type of financing where investors provide          
capital to startups to finance growth in return for equity. After           
interviewing 20+ investors from top venture funds such as         
Bessemer Venture Partners, Andreessen, Sequoia, Redpoint and       
GV, we have defined the typical early-stage venture capital         
process as follows: investors conduct research on the team,         
market, product, competitive landscape and financials. The       
investing team amalgamates research and subjectively weighs       
data points to arrive at a binary decision of whether to invest or             
pass on the opportunity. A successful investment is one where          
the company’s valuation appreciates and the investor is able to          
liquidate their stake at the heightened valuation, generating a         
profit. Given this, the ideal task is predicting valuation multiple          
at time of exit. With this said, potential exit and liquidation           
events are unpredictable, vary significantly in time horizon and         

are often not documented. Therefore, we defined our goal as          
predicting the valuation multiple in the subsequent round of         
funding. While we recognize gains cannot necessarily be        
realized in successive rounds, valuation step-up multiple is the         
cardinal indicator of future exit value.  

We limited our dataset to venture-backed companies in the U.S.          
who have raised a seed round of financing and were founded           
between the years 1990 and 2020. Through leveraging Pitchbook         
data, a popular commercial dataset of company and funding         
information, we were able to yield over 160 features ranging          
from founder name, which we can deduce gender from, to          
industry_code, from which we can extract market-wide growth        
rates. After extensive cleaning, pre-processing and      
transformations, we honed in on 30 core features. These features          
were fed into a custom-trained 10-layer dense, fully-connected        
neural network which encodes the features and predicts a         
numerical valuation step-up multiple. 

II.  RELATED WORK 

Some previous work has attempted to predict the success of a           
startup based on information regarding the company and its         
founders. A particular project named the Holy Grail of Venture          
Capital [5] was conducted by a technical and VC-experienced         
team from the University of California at Berkeley who utilized          
traits of a founder including fear of failure, persistence,         
perusation, reliability, competitiveness, network strength, and      
trust to determine likelihood of success. These traits were scaled          
as a quantitative measure from 1 to 5. Using data from           
Crunchbase and a founder survey, the team ended up using eight           
features and one target output determined from their cycles of          
pre-processing. When building their model, they compared       
algorithms built on logistic regression, SVM, perceptron, Naive        
Bayes, XGBoost, as well as random forest. While many         
algorithms were compared, they did not explore using deep         
learning techniques.  

Another prior work was conducted by Will Gornell and Ilya          
Strebulaev to build a valuation model of venture capital-backed         
companies with multiple rounds of financing [4]. They built a          
model using data from Pitchbook and Genesis and limited their          
scope to U.S. companies from 2004 onwards. They analyzed         
about 19,000 companies over 37,000 financing rounds. The        
paper explores regression models to determine how current        
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value, value change, and prior contractual terms impact the         
terms of a new round. Their results indicated an overestimation          
of post-valuation of companies but found results in line with the           
prices reported from the VC industry’s finance intermediaries.  

III. DATASET AND FEATURES 
Our research utilized data from Pitchbook, one the premier         
commercial datasets of startups and venture capitalists. We        
began our data collection by scraping every company and         
fundraising round from the Pitchbook database. We restricted        
our dataset to U.S. companies that had raised a seed round of            
venture financing and were founded post-1990 and pre-2020.  

While the raw dataset included over 10,000 rows, a large          
percentage of data entries were notably sparse and included         
duplicates. To solve for such, we subsequently mapped every         
company and fundraising round to a unique company identifier         
and deal identifier, respectively. We then removed duplicate        
entries by their unique deal identifier and excluded companies         
for which we could not find consistent, round-to-round        
information. After data cleaning, a dataset of 34,265 unique         
deals across 22,067 unique companies remained. 

Given we are predicting the valuation step-up multiple in         
subsequent rounds, we wanted to ensure our data was well          
distributed among various initial fundraising rounds. Below is        
the distribution of rounds for the five predominant fundraising         
stages.  

 
Fig. 1. Distribution by fundraising round (Seed, A, B, C, D) in dataset 

An important factor to correct for within our dataset was          
survivorship bias given the preponderance of companies that        
fail, especially early on in their development. Inherently our         
dataset is biased towards favoring successful vs unsuccessful        
companies as we are limited to a dataset of companies which           
PitchBook tracks. According to The National Venture Capital        
Association, roughly 25% of venture-backed businesses fail. In        
our dataset, only 7% of companies fail, which is nearly 1/4th of            
the national average [3]. We attempted to solve for survivorship          
bias by taking a longitudinal approach to our data collection and           
factoring company status into our predictive model. More        
concretely, if the business_status was “Out of Business”, we         
assigned a valuation multiple of 0 to the last round of funding.            
Despite our efforts, we are aware survivorship bias is a weakness           
of our model.  

A. Data Processing and Transformations 

The data natively included 160+ columns, including: founder        
demographics, company information (e.g. year founded,      
location, employee count), customer count, number of deals, and         
features of the fundraise (e.g. deal size and liquidation         
preference as a proxy for perceived risk), and more. Please see           
the full set of raw available columns in the appendix. 

We performed extensive pre-processing and transformations to       
convert columns into meaningful features. Below is a table of          
the pre-processing and transformation techniques deployed. 

In addition to the techniques mentioned above, we integrated a          
GDP-deflator as an effort to standardize values over time. 

We also implemented normalization, a technique to constrain        
values to a common scale, for features which were based on           
multiple ranges. Normalization brought variables to the same        
range which shortened the time to model convergence. Note that          
without normalization the gradients took a much longer time to          
find a local minimum. 

B. Generating the output variable 

The dataset did not natively include our desired output variable:          
valuation step-up multiple. To generate this label, we grouped all          
rows by company_id, iterated over each deal and calculated the          
valuation step-up multiple which is equal to: 

 

Recall this formula yields the multiple compared to the previous          
round of fundraising. For instance, if the post money valuation          
of the Seed round was $10M and the post money valuation of the             
current Series A round was $20M, the output label of valuation           
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 Pre-processing techniques 

As-is 

["employee_count","year_founded","deal_number", 
"percent_owned","percent_acquired","pre_valuation","
raised_to_date","deal_size", 
"price_per_share_x","post_valuation"] 

Hot 
encodings 

["business_status","ownership_status","financing_sta
tus","universe","sic_codes","naics_codes","state","s
tock_type_x","state","deal_status","deal_class","dea
l_type_2"] 

Binary 
/Tertiary 
Conversio
ns 

["website","parent_company","tech_hotspot","country"
,"name", "board_voting_rights"] 

Count 
Conversions 

['sister_companies_count','subsidiary_companies_coun
t','customers_count','market_count','competition', 
'products'] 

Other 

'elapsed_announced_deal' - Contains # of days elapsed       
between the announced date and the date the deal got done.           
Calculated from fields 'deal_date' and 'announced_date' 

‘founder_gender' - Using gender_guesser.detector to predict the       
gender of the founder  



 
step-up multiple would be 2.0. Note that the output of the           
algorithm is a numeric float. 

Below is the distribution of our cleaned dataset based on our           
output label of valuation step-up multiple. As the figure displays,          
the majority of companies less than double round to round and           
the 99th percentile hovers at  a 10.25x multiple.  

 
Fig. 2. Distribution of output label (valuation multiple) in training set 

C.  Test, Development and Training Set 

The dataset was split into training, development and test sets.          
The final division was: 

- Training set: 70% (16424 samples) 
- Development set: 10% (2348 samples) 
- Validation set: 10% (2347 samples)  
- Test set: 10% (2344 samples)  

We arrived at this breakdown through considering the goals of          
the development set, which is to evaluate different algorithms         
and hyperparameters, and the training set, which is to learn the           
optimal model parameters. We aimed to utilize the training and          
dev set while fitting the model so we could obtain and plot how             
both the losses vary over the epochs of training. In order to have             
a separate dataset for hyperparameter tuning and       
experimentation, we crafted a validation dataset that was        
evaluated over only after training. To construct the subsets we          
randomly chose samples and confirmed the distribution of        
successful and unsuccessful companies were similar in all sets. 

IV. METHODS 
Data manipulation and models were built using Keras [2],         
Tensorflow [1], Numpy [6], and Scikit-learn [7]. The        
architecture was designed from scratch, albeit motivated by        
previous research in this domain. 

A. Deep Neural Network Architecture 

Our final architecture was a deep fully-connected neural network         
consisting of a total of 10 fully-connected layers (4 hidden, 1           
input, and 1 output layer). Given that our data was structured,           
quantitative data in tabular form, we postulated that a         
fully-connected neural network would be the optimal model        
compared to other neural network implementations such as        
CNNs or RNNs. We initialized the weights with He         
Normalization and implemented L1 Regularization for each       
layer except the output. Between each layer we passed the          

vectorized outputs into a Leaky ReLU activation function for all          
layers except the output where we used a linear activation. We           
used a linear activation in our final layer as our desired output            
prediction is a real number (float type) which is the valuation           
step-up multiple of the company. We settled on the following          
distribution after extensive testing and analysis detailed in the         
section VI (Experiments). 

 
Input Layer ∈ ℝ29 Hidden ℝ62 Hidden ℝ30 Hidden ℝ70 Hidden ℝ50 Hidden ℝ58               
Hidden ℝ81  Hidden ℝ78  Hidden  ℝ77 Hidden  ℝ79 Output  ℝ1 
Fig. 3. Net Architecture 

B. Hyperparameters and Loss Function 

Relevant hyperparameters (outside of number of layers) which        
we tuned resulted in the following: 

1. Learning rate: 0.005  
2. Gradient Clipping Parameter: 0.7 
3. Regularization: L1 
4. Dropout Rate: 0.25 
5. Epochs: 100 
6. Batch Size: 64 

For our loss function, we decided to prioritize mean-squared 
error (MSE) as our primary loss metric given our model is a 
regression problem, opposed to classification. MSE was selected 
over options such as MAE due to having harsher penalties for 
more distant errors compared to MAE (given that errors are 
squared).

 

C. Baseline Models 

A linear regression model was implemented as a baseline to          
compare performance. The linear regression model yielded 6.6 *         
1011 for MSE on the dev set which was significantly worse than            
our deep learning model. 

We also implemented a random forest model as an alternative          
baseline to compare performance. We used the       
RandomForestRegressor model from sklearn and trained the       
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model with n_estimators = 100 and random_state = 42. This          
random forest regression model yielded a .97 MSE on the dev           
set.  

V. EXPERIMENTS, RESULTS AND DISCUSSION 

A. Experiments 
We ran our model and iterated our experiments using Google          
Colab and implemented the Google TPU hardware accelerator        
which significantly reduced our runtime.  

Learning rate was tuned manually, using      
keras.callbacks.ReduceLROnPlateau, a function for learning rate      
step decay. This function reduces the learning rate when no          
improvement is seen within a certain number of epochs.         
Adjustments to the learning rate decay and scheduling were         
made by monitoring the loss curve, with preeminent results         
achieved using an initial learning rate of 0.005, a minimum rate           
of 0.001,  and a 0.2 factor drop per reduction.  

After running a few initial iterations of our model, we noticed a            
high bias given the substantial discrepancy between our training         
loss and that of other models such as random forest, as           
previously reported. To combat this underfitting, we       
implemented gradient clipping to prevent exploding gradients,       
which significantly reduced our training loss.  

We ran several experiments in order to optimize our model.  

The number of epochs was manually selected through various 
trial runs. We settled on 100 epochs because the training and dev 
set losses were plateauing at that point.  

Another improvement came from changing the type of        
regularization to mitigate overfitting. When regularization was       
changed from L2 to L1 the MSE was reduced for both the            
training and dev set. We hypothesize this improvement was due          
to L1 shrinking the non-relevant weights to 0, serving as feature           
selection. After observing superior performance when utilizing       
L1 regularization, we implemented all of our subsequent        
experimental models using L1. 

 

Fig. 4. Results from comparing L1 and L2 regularization 

To optimize most other hyperparameters, we used a random 
search tuning process. Instead of using the Keras Tuner library, 
we decided to build the optimizer in-house, from scratch.  

We ran fifteen different experiments, each utilizing a different 
seed (going sequentially from 0 to 14)  to ensure each of our 
experiments yielded a different network architecture and utilized 
different hyperparameters so we could effectively compare. 
Seeds were used to ensure our experiments were replicable.  

We iterated over three options for the activation function. 
Options included ReLU, Leaky ReLU, and the Swish function. 
The Swish function is similar to the ReLU function but it’s  a 
smooth function, meaning it smoothly blends past zero and 
upwards, and has been displaying promising results in academia 
and industry [8]. The equation and graph for the swish activation 
function is as follows: 

 
Fig. 5. Swish activation function formula and plot 

Throughout each experiment we calculated three values of 
mean-squared errors - training, dev, and validation MSE. In our 
implementation, the dev dataset was used to calculate losses per 
epoch along with the training so we could generate a plot of how 
the loss changed over the training of the model. The training and 
dev MSE reported below are the final values after running 
through all the epochs. Validation MSE was determined by 
evaluating the model on a separate subset (different than the 
train, dev, and test) after all the epochs of training were 
completed. The table belows shows a subset of our experiments 
and results from our random search function.  

 

Fig. 6. Hyperparameter tuning experiments 

B. Evaluation and Results 

Below is a table of our best deep learning (DL) model alongside            
our two non-deep learning baseline models.  
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 Training MSE Dev MSE 

L1 1.77 1.55 

L2 1.91 2.53 

 #0 #3 #4 #10 #13 

Regularization .00637 .00626 .000135 .00822 .00775 

Clipnorm 0.6 0.2 0.8 0.5 0.3 

Dropout 0.05 0.2 0.3 0.05 0.05 

# of layers 7 4 5 5 10 

Hidden units per 
layer 

 [71, 
13,87, 
25, 40, 
91,74] 

[76, 
4,25, 
23] 

[91,76,5
4,13,62] 

[32,93
,97,33,
12] 

 [29, 62, 30, 70, 
50, 58, 81, 78, 
77, 79] 

Activation Leaky 
Relu 

Leaky 
Relu 

Leaky 
Relu 

Relu Leaky Relu 

Training MSE 1.910 2.067 1.930 1.546 1.488 

Dev MSE 1.814 1.778 1.670 1.593 1.543 

Validation MSE 1.585 1.483 1.381 1.255 1.260 



 

 

Fig. 7. Results of NN arch improvements and  hyperparameter tuning. 

Mean-squared errors for our best model are also shown in the           
plot below over both training and development datasets.  

 
Fig. 8. Mean Log MSE among 5 runs of our best deep learning model plotted             

with vertical error bars for Training and Dev MSE 

Our best model utilizing a deep neural network resulted in a 
1.488 training loss, 1.260 validation loss, and a 1.58 test loss. 
After running our best model 5 times, we had a standard 
deviation in the MSE of 6.5 for just the training, 0.61 for the 
validation, and a combined 4.6 over both training and validation. 
Comparing our model with non-deep learning approaches, we 
see that the deep network performs better than the OLS Lasso 
linear regression model. However, the random forest regressor 
outperforms both linear regression and our deep learning model 
by a substantial margin. We hypothesize that this discrepancy is 
due to the robustness of random forest models for structured, 
tabular data.  

C. Conclusion and Future Work 

Among all our deep learning models, a 10 layer network with a 
Leaky ReLU activation and L1 regularization had the best 

performance, achieving a 1.488 training MSE, 1.260 validation 
MSE. 

While we were not able to outperform the random forest model, 
we believe more analysis would have to be performed to 
understand the chief differences between the approaches that 
result in these discrepancies.  

The primary limitations of this project were time and data 
collection. Not only did the data take a significant amount of 
time to collect but once collected, it was sparse and required 
ample pre-preprocessing and transformations.  With additional 
time we would like to explore implementing a feed-forward 
neural network given it has shown promising results specifically 
with tabular data. Additionally, we would like to explore 
additional loss metrics and alternative ways of evaluating model 
performance. 

Github: https://github.com/gautam0831/CS230_Project 
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Results 

Description Training 
MSE 

Validation 
MSE 

Test 
MSE 

Standard 
Deviation 

Best DL  
Model 

10 layer leaky   
ReLu from  
hyperparameter 
tuning with L1 

1.488 1.260 1.58 

Training: 
6.5 

Validation:
0.61 

Overall:4.6 

Linear 
Regression 

Ordinary least 
squares (OLS) 
linear regression 
with L1  

2.452 2.339 2.441 N/A 

Random 
Forest 

RandomForest 
Regressor model 
with n_estimators 
= 100  

0.153 1.101 1.105 N/A 

https://github.com/gautam0831/CS230_Project
https://github.com/fchollet/keras
http://www.wsj.com/articles/SB10000872396390443720204578004980476429190


 

APPENDIX 

Available columns provided by dataset:  
company_id, company_name_x, familiar_name, previous_name, exchange,     
ticker, employee_count, year_founded, business_status, ownership_status,     
financing_status, universe, website, financing_note, full_description,     
total_raised_to_date, valuation_revenue, primary_contact_first_name,   
primary_contact_last_name, parent_company, sister_companies,   
subsidiary_companies, sic_codes, morningstar_codes, naics_codes, cik_code,     
customers, market, competition, products, performance_as_of_date, stock_price,      
average_volume, shares_outstanding, previous_close,   
price_percent_change_1_week, price_percent_change_4_weeks, beta,   
X52_week_range_low, X52_week_range_hi, market_cap_tso, eps, p_e,     
last_updated_x_x, company_name_y, location_id, location_name, address_1,     
address_2, city, state, zip, country, location_type, location_status, office_phone,        
office_fax, last_updated_y_x, company_name, deal_id, deal_number,     
announced_date, deal_date, deal_size, pre_valuation, post_valuation,     
post_valuation_status, ceo_first_name, ceo_last_name, deal_status, deal_class,     
deal_type_1, deal_type_2, deal_type_3, stock_type_x, stock_series,     
conversion_ratio_x, stock_split_x, percent_acquired, price_per_share_x,    
raised_to_date, add_on, total_debt, assumed_liabilities, debt_type_1,     
debt_type_2, debt_type_3, debt_amount_1, debt_amount_2, debt_amount_3,     
deal_synopsis, financials_period, financials_ending,   
debt_raised_in_round_ebitda, debt_raised_in_round_equity, deal_size_ebitda,   
valuation_ebitda, deal_size_ebit, valuation_ebit, deal_size_net_income,    
valuation_net_income, deal_size_revenue, deal_size_cash_flow,   
valuation_cash_flow, implied_ev_ebitda, last_updated_y_y implied_ev_ebit,    
implied_ev_net_income, implied_ev_revenue, implied_ev_cash_flow,   
total_revenue, gross_profit, net_income, ebitda, ebit, diluted_eps_net_income,      
total_current_assets, total_long_term_assets, cumulative, total_assets,    
total_current_liabilities, total_long_term_liabilities, total_liabilities,   
total_shareholders_equity, total_liabilities_and_equity, Ebitda_margin,   
book_value, lt_debt_lt_capital, basic_weighted_average_shares,   
diluted_weighted_average_shares, lt_debt_total_capital, implied_ev,   
cash_from_operating_activities, participating, cash_from_investing_activities,   
cash_from_financing_activities, change_in_cash, cf_net_income, debt_ebitda,    
debt_equity, liquidation, revenue_percent_growth, ebitda_percent_growth,    
ebit_percent_growth, net_income_percent_growth, last_updated_x_y,   
captable_id, series, stock_type_y, price_per_share_y, shares_sought,     
shares_acquired, conversion_ratio_y, stock_split_y, liquidation_preferences,    
dividend_rights, anti_dilution_provisions, board_voting_rights,   
general_voting.rights, shares_authorized, par_value, dividend_rate,    
original_price,  liquidation_pref_mutliple, conversion_price, percent_owned 

 

Final featured used within the model: 
1. employee_count: number of employees 
2. year_founded: year company was founded 
3. deal_number: unique deal identifier 
4. percent_owned: percent acquired through round 
5. percent_aquired: percent acquired by investors in      

the round 
6. pre_valuation: pre-money valuation in round 
7. raised_to_date: capital previously raised by     

company 
8. deal_size: amount raised, in Millions 
9. price_per_share: price per share in round 
10. post_valuation: post money valuation in round 
11. business_status: stage of company, Options     

include: Clinical Trials, Product Development,     
Generating Revenue, Profitable, Out of Business. 

12. ownership_status: who owns the company. Options      
include: Publicly Held, Privately Held (backing),      
Acquired/Merged, Out of Business 

13. financing_status: universe: sic_codes: 

14. naics_codes: industry code dictated by the North       
American Industry Classification System 

15. state: country of company headquarters 
16. stock_type_x: type of stock. Options include:      

Preferred, Participating Preferred, Combination or     
Common.  

17. deal_status: status of deal. Some options include:       
Completed and Announced. 

18. deal_class: type of deal. Some options include:       
Venture Capital and Individual. 

19. deal_type_2: type of round. Options include: Series       
A, Series B, Series C, etc. 

20. website: company URL 
21. parent_company: parent company of current     

company 
22. tech_hotspot: yes/no if company in a array of tech         

hotspots, sourced from Crunchbase’s list of top       
recipient cities of venture capital funding [7] and a         
subjectively sourced list of cities that may serve as         
ancillary cities to the top ten cities identified ("New         
York", "San Francisco", "San Mateo", "San Jose",       
"Menlo Park", "Mountain View", "Boston",     
"Cambridge", "Seattle", "Berkeley", "Palo Alto",     
"Stanford", "Chicago", "Sunnyvale", "Redwood City",     
"South San Francisco", "Millbrae",    
"Austin","Evanston", "Raleigh", "Durham",   
"Cupertino") 

23. country: country of company headquarters 
24. name:  company name 
25. board_voting_rights:  yes/no if board can vote 
26. sister_companies_count: number of sister    

companies 
27. subsidiary_companies_count: number of   

subsidiaries 
28. customers_count:  number of customers  
29. market_count: market the company operates within 
30. competition: major competitors of the company 
31. products: What products the company sells 
32. business_status: Business status. Options include     

Generating Revenue, Out of Business, Startup, and       
Profitable. 

33. Elapsed_announced_deal: Time elapsed between     
announcement date and deal date. 
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