

Algorithmic Venture Capital
Predicting valuation step-up multiple in venture backed companies through deep learning techniques

Abstract—Venture capital plays an instrumental role in the modern
American economy. Corporations such as Google, Apple, Facebook,
Instagram, PayPal, Tesla, SpaceX, Airbnb, FedEx and Intel all
received venture funding to enduringly grow into the iconic
companies they are today. As of 2015, venture backed companies
made up 17% of U.S. public companies, accounted for 44% of R&D
spending and employed 11% of U.S. citizens [3]. Despite the
unequivocal impact venture capital has on the United States, the
process behind venture investment decisions remains manual,
subjective and unsystematic.

This paper sets out to explore whether venture capital can benefit
from machine learning, particularly deep learning, to make
investment decisions in a more scientific way. Specifically, we aim
to predict the valuation step-up multiple in the subsequent
financing round of venture backed U.S. companies. The primary
dataset for our model comes from Pitchbook, a popular commercial
dataset of company and funding information. We produced a
regression-based model to utilize a fully-connected 10-layer neural
network to encode features and predict the valuation step-up
multiple. Results show that for the regression task of predicting
company valuation step-up, deep-learning techniques meaningfully
outperform statistical inference models such as linear regression in.
However, non-deep learning models, such as random forest, appear
to be better suited for such regression analysis.

Keywords: fully-connected neural network, venture capital,
regression, company valuation prediction

I. INTRODUCTION
Venture capital is a type of financing where investors provide
capital to startups to finance growth in return for equity. After
interviewing 20+ investors from top venture funds such as
Bessemer Venture Partners, Andreessen, Sequoia, Redpoint and
GV, we have defined the typical early-stage venture capital
process as follows: investors conduct research on the team,
market, product, competitive landscape and financials. The
investing team amalgamates research and subjectively weighs
data points to arrive at a binary decision of whether to invest or
pass on the opportunity. A successful investment is one where
the company’s valuation appreciates and the investor is able to
liquidate their stake at the heightened valuation, generating a
profit. Given this, the ideal task is predicting valuation multiple
at time of exit. With this said, potential exit and liquidation
events are unpredictable, vary significantly in time horizon and

are often not documented. Therefore, we defined our goal as
predicting the valuation multiple in the subsequent round of
funding. While we recognize gains cannot necessarily be
realized in successive rounds, valuation step-up multiple is the
cardinal indicator of future exit value.

We limited our dataset to venture-backed companies in the U.S.
who have raised a seed round of financing and were founded
between the years 1990 and 2020. Through leveraging Pitchbook
data, a popular commercial dataset of company and funding
information, we were able to yield over 160 features ranging
from founder name, which we can deduce gender from, to
industry_code, from which we can extract market-wide growth
rates. After extensive cleaning, pre-processing and
transformations, we honed in on 30 core features. These features
were fed into a custom-trained 10-layer dense, fully-connected
neural network which encodes the features and predicts a
numerical valuation step-up multiple.

II. RELATED WORK

Some previous work has attempted to predict the success of a
startup based on information regarding the company and its
founders. A particular project named the Holy Grail of Venture
Capital [5] was conducted by a technical and VC-experienced
team from the University of California at Berkeley who utilized
traits of a founder including fear of failure, persistence,
perusation, reliability, competitiveness, network strength, and
trust to determine likelihood of success. These traits were scaled
as a quantitative measure from 1 to 5. Using data from
Crunchbase and a founder survey, the team ended up using eight
features and one target output determined from their cycles of
pre-processing. When building their model, they compared
algorithms built on logistic regression, SVM, perceptron, Naive
Bayes, XGBoost, as well as random forest. While many
algorithms were compared, they did not explore using deep
learning techniques.

Another prior work was conducted by Will Gornell and Ilya
Strebulaev to build a valuation model of venture capital-backed
companies with multiple rounds of financing [4]. They built a
model using data from Pitchbook and Genesis and limited their
scope to U.S. companies from 2004 onwards. They analyzed
about 19,000 companies over 37,000 financing rounds. The
paper explores regression models to determine how current

1

Casey Caruso

Google Corporation

caseycaruso@google.com

Francisco Enriquez

Stanford Business School

fwe@stanford.edu

Abraham Oshotse

Stanford University

aoshotse@stanford.edu

Gautam Pradeep

Stanford University

gpradeep@stanford.edu

mailto:fwe@stanford.edu
mailto:aoshotse@stanford.edu
mailto:gpradeep@stanford.edu

value, value change, and prior contractual terms impact the
terms of a new round. Their results indicated an overestimation
of post-valuation of companies but found results in line with the
prices reported from the VC industry’s finance intermediaries.

III. DATASET AND FEATURES
Our research utilized data from Pitchbook, one the premier
commercial datasets of startups and venture capitalists. We
began our data collection by scraping every company and
fundraising round from the Pitchbook database. We restricted
our dataset to U.S. companies that had raised a seed round of
venture financing and were founded post-1990 and pre-2020.

While the raw dataset included over 10,000 rows, a large
percentage of data entries were notably sparse and included
duplicates. To solve for such, we subsequently mapped every
company and fundraising round to a unique company identifier
and deal identifier, respectively. We then removed duplicate
entries by their unique deal identifier and excluded companies
for which we could not find consistent, round-to-round
information. After data cleaning, a dataset of 34,265 unique
deals across 22,067 unique companies remained.

Given we are predicting the valuation step-up multiple in
subsequent rounds, we wanted to ensure our data was well
distributed among various initial fundraising rounds. Below is
the distribution of rounds for the five predominant fundraising
stages.

Fig. 1. Distribution by fundraising round (Seed, A, B, C, D) in dataset

An important factor to correct for within our dataset was
survivorship bias given the preponderance of companies that
fail, especially early on in their development. Inherently our
dataset is biased towards favoring successful vs unsuccessful
companies as we are limited to a dataset of companies which
PitchBook tracks. According to The National Venture Capital
Association, roughly 25% of venture-backed businesses fail. In
our dataset, only 7% of companies fail, which is nearly 1/4th of
the national average [3]. We attempted to solve for survivorship
bias by taking a longitudinal approach to our data collection and
factoring company status into our predictive model. More
concretely, if the business_status was “Out of Business”, we
assigned a valuation multiple of 0 to the last round of funding.
Despite our efforts, we are aware survivorship bias is a weakness
of our model.

A. Data Processing and Transformations

The data natively included 160+ columns, including: founder
demographics, company information (e.g. year founded,
location, employee count), customer count, number of deals, and
features of the fundraise (e.g. deal size and liquidation
preference as a proxy for perceived risk), and more. Please see
the full set of raw available columns in the appendix.

We performed extensive pre-processing and transformations to
convert columns into meaningful features. Below is a table of
the pre-processing and transformation techniques deployed.

In addition to the techniques mentioned above, we integrated a
GDP-deflator as an effort to standardize values over time.

We also implemented normalization, a technique to constrain
values to a common scale, for features which were based on
multiple ranges. Normalization brought variables to the same
range which shortened the time to model convergence. Note that
without normalization the gradients took a much longer time to
find a local minimum.

B. Generating the output variable

The dataset did not natively include our desired output variable:
valuation step-up multiple. To generate this label, we grouped all
rows by company_id, iterated over each deal and calculated the
valuation step-up multiple which is equal to:

Recall this formula yields the multiple compared to the previous
round of fundraising. For instance, if the post money valuation
of the Seed round was $10M and the post money valuation of the
current Series A round was $20M, the output label of valuation

2

 Pre-processing techniques

As-is

["employee_count","year_founded","deal_number",
"percent_owned","percent_acquired","pre_valuation","
raised_to_date","deal_size",
"price_per_share_x","post_valuation"]

Hot
encodings

["business_status","ownership_status","financing_sta
tus","universe","sic_codes","naics_codes","state","s
tock_type_x","state","deal_status","deal_class","dea
l_type_2"]

Binary
/Tertiary
Conversio
ns

["website","parent_company","tech_hotspot","country"
,"name", "board_voting_rights"]

Count
Conversions

['sister_companies_count','subsidiary_companies_coun
t','customers_count','market_count','competition',
'products']

Other

'elapsed_announced_deal' - Contains # of days elapsed
between the announced date and the date the deal got done.
Calculated from fields 'deal_date' and 'announced_date'

‘founder_gender' - Using gender_guesser.detector to predict the
gender of the founder

step-up multiple would be 2.0. Note that the output of the
algorithm is a numeric float.

Below is the distribution of our cleaned dataset based on our
output label of valuation step-up multiple. As the figure displays,
the majority of companies less than double round to round and
the 99th percentile hovers at a 10.25x multiple.

Fig. 2. Distribution of output label (valuation multiple) in training set

C. Test, Development and Training Set

The dataset was split into training, development and test sets.
The final division was:

- Training set: 70% (16424 samples)
- Development set: 10% (2348 samples)
- Validation set: 10% (2347 samples)
- Test set: 10% (2344 samples)

We arrived at this breakdown through considering the goals of
the development set, which is to evaluate different algorithms
and hyperparameters, and the training set, which is to learn the
optimal model parameters. We aimed to utilize the training and
dev set while fitting the model so we could obtain and plot how
both the losses vary over the epochs of training. In order to have
a separate dataset for hyperparameter tuning and
experimentation, we crafted a validation dataset that was
evaluated over only after training. To construct the subsets we
randomly chose samples and confirmed the distribution of
successful and unsuccessful companies were similar in all sets.

IV. METHODS
Data manipulation and models were built using Keras [2],
Tensorflow [1], Numpy [6], and Scikit-learn [7]. The
architecture was designed from scratch, albeit motivated by
previous research in this domain.

A. Deep Neural Network Architecture

Our final architecture was a deep fully-connected neural network
consisting of a total of 10 fully-connected layers (4 hidden, 1
input, and 1 output layer). Given that our data was structured,
quantitative data in tabular form, we postulated that a
fully-connected neural network would be the optimal model
compared to other neural network implementations such as
CNNs or RNNs. We initialized the weights with He
Normalization and implemented L1 Regularization for each
layer except the output. Between each layer we passed the

vectorized outputs into a Leaky ReLU activation function for all
layers except the output where we used a linear activation. We
used a linear activation in our final layer as our desired output
prediction is a real number (float type) which is the valuation
step-up multiple of the company. We settled on the following
distribution after extensive testing and analysis detailed in the
section VI (Experiments).

Input Layer ∈ ℝ29 Hidden ℝ62 Hidden ℝ30 Hidden ℝ70 Hidden ℝ50 Hidden ℝ58
Hidden ℝ81 Hidden ℝ78 Hidden ℝ77 Hidden ℝ79 Output ℝ1
Fig. 3. Net Architecture

B. Hyperparameters and Loss Function

Relevant hyperparameters (outside of number of layers) which
we tuned resulted in the following:

1. Learning rate: 0.005
2. Gradient Clipping Parameter: 0.7
3. Regularization: L1
4. Dropout Rate: 0.25
5. Epochs: 100
6. Batch Size: 64

For our loss function, we decided to prioritize mean-squared
error (MSE) as our primary loss metric given our model is a
regression problem, opposed to classification. MSE was selected
over options such as MAE due to having harsher penalties for
more distant errors compared to MAE (given that errors are
squared).

C. Baseline Models

A linear regression model was implemented as a baseline to
compare performance. The linear regression model yielded 6.6 *
1011 for MSE on the dev set which was significantly worse than
our deep learning model.

We also implemented a random forest model as an alternative
baseline to compare performance. We used the
RandomForestRegressor model from sklearn and trained the

3

model with n_estimators = 100 and random_state = 42. This
random forest regression model yielded a .97 MSE on the dev
set.

V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Experiments
We ran our model and iterated our experiments using Google
Colab and implemented the Google TPU hardware accelerator
which significantly reduced our runtime.

Learning rate was tuned manually, using
keras.callbacks.ReduceLROnPlateau, a function for learning rate
step decay. This function reduces the learning rate when no
improvement is seen within a certain number of epochs.
Adjustments to the learning rate decay and scheduling were
made by monitoring the loss curve, with preeminent results
achieved using an initial learning rate of 0.005, a minimum rate
of 0.001, and a 0.2 factor drop per reduction.

After running a few initial iterations of our model, we noticed a
high bias given the substantial discrepancy between our training
loss and that of other models such as random forest, as
previously reported. To combat this underfitting, we
implemented gradient clipping to prevent exploding gradients,
which significantly reduced our training loss.

We ran several experiments in order to optimize our model.

The number of epochs was manually selected through various
trial runs. We settled on 100 epochs because the training and dev
set losses were plateauing at that point.

Another improvement came from changing the type of
regularization to mitigate overfitting. When regularization was
changed from L2 to L1 the MSE was reduced for both the
training and dev set. We hypothesize this improvement was due
to L1 shrinking the non-relevant weights to 0, serving as feature
selection. After observing superior performance when utilizing
L1 regularization, we implemented all of our subsequent
experimental models using L1.

Fig. 4. Results from comparing L1 and L2 regularization

To optimize most other hyperparameters, we used a random
search tuning process. Instead of using the Keras Tuner library,
we decided to build the optimizer in-house, from scratch.

We ran fifteen different experiments, each utilizing a different
seed (going sequentially from 0 to 14) to ensure each of our
experiments yielded a different network architecture and utilized
different hyperparameters so we could effectively compare.
Seeds were used to ensure our experiments were replicable.

We iterated over three options for the activation function.
Options included ReLU, Leaky ReLU, and the Swish function.
The Swish function is similar to the ReLU function but it’s a
smooth function, meaning it smoothly blends past zero and
upwards, and has been displaying promising results in academia
and industry [8]. The equation and graph for the swish activation
function is as follows:

Fig. 5. Swish activation function formula and plot

Throughout each experiment we calculated three values of
mean-squared errors - training, dev, and validation MSE. In our
implementation, the dev dataset was used to calculate losses per
epoch along with the training so we could generate a plot of how
the loss changed over the training of the model. The training and
dev MSE reported below are the final values after running
through all the epochs. Validation MSE was determined by
evaluating the model on a separate subset (different than the
train, dev, and test) after all the epochs of training were
completed. The table belows shows a subset of our experiments
and results from our random search function.

Fig. 6. Hyperparameter tuning experiments

B. Evaluation and Results

Below is a table of our best deep learning (DL) model alongside
our two non-deep learning baseline models.

4

 Training MSE Dev MSE

L1 1.77 1.55

L2 1.91 2.53

 #0 #3 #4 #10 #13

Regularization .00637 .00626 .000135 .00822 .00775

Clipnorm 0.6 0.2 0.8 0.5 0.3

Dropout 0.05 0.2 0.3 0.05 0.05

of layers 7 4 5 5 10

Hidden units per
layer

 [71,
13,87,
25, 40,
91,74]

[76,
4,25,
23]

[91,76,5
4,13,62]

[32,93
,97,33,
12]

 [29, 62, 30, 70,
50, 58, 81, 78,
77, 79]

Activation Leaky
Relu

Leaky
Relu

Leaky
Relu

Relu Leaky Relu

Training MSE 1.910 2.067 1.930 1.546 1.488

Dev MSE 1.814 1.778 1.670 1.593 1.543

Validation MSE 1.585 1.483 1.381 1.255 1.260

Fig. 7. Results of NN arch improvements and hyperparameter tuning.

Mean-squared errors for our best model are also shown in the
plot below over both training and development datasets.

Fig. 8. Mean Log MSE among 5 runs of our best deep learning model plotted

with vertical error bars for Training and Dev MSE

Our best model utilizing a deep neural network resulted in a
1.488 training loss, 1.260 validation loss, and a 1.58 test loss.
After running our best model 5 times, we had a standard
deviation in the MSE of 6.5 for just the training, 0.61 for the
validation, and a combined 4.6 over both training and validation.
Comparing our model with non-deep learning approaches, we
see that the deep network performs better than the OLS Lasso
linear regression model. However, the random forest regressor
outperforms both linear regression and our deep learning model
by a substantial margin. We hypothesize that this discrepancy is
due to the robustness of random forest models for structured,
tabular data.

C. Conclusion and Future Work

Among all our deep learning models, a 10 layer network with a
Leaky ReLU activation and L1 regularization had the best

performance, achieving a 1.488 training MSE, 1.260 validation
MSE.

While we were not able to outperform the random forest model,
we believe more analysis would have to be performed to
understand the chief differences between the approaches that
result in these discrepancies.

The primary limitations of this project were time and data
collection. Not only did the data take a significant amount of
time to collect but once collected, it was sparse and required
ample pre-preprocessing and transformations. With additional
time we would like to explore implementing a feed-forward
neural network given it has shown promising results specifically
with tabular data. Additionally, we would like to explore
additional loss metrics and alternative ways of evaluating model
performance.

Github: https://github.com/gautam0831/CS230_Project

VI. MEMBER CONTRIBUTIONS
All team members contributed equally to the direction of the
project through weekly meetings. This included work for loading
data, cleaning and pre-processing our features, experimenting
with neural network architectures, and analyzing our results
together in discussion.

ACKNOWLEDGMENT
Thank you to Andrew Ng for teaching CS230 at Stanford and
helping us grasp these deep learning concepts. We also
appreciate the guidance and support from our project mentor
Jonathan Li. We would also like to thank Prof. Ilya Strebulaev,
Professor of Finance at the Stanford Graduate School of
Business, for providing us with access to a comprehensive
database of venture capital investments that formed the
foundation of our research.

REFERENCES
[1] Abadi, Martín, Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., … others. (2016). Tensorflow: A system for
 large-scale machine learning. In 12th USENIX Symposium
 on Operating Systems Design and Implementation (OSDI
 16) (pp. 265–283).
[2] Chollet, F. & others, 2015. Keras. Available at:
 https://github.com/fchollet/keras.
[3] Gage, Deborah. “The Venture Capital Secret: 3 Out of 4 Start-Ups Fail.”The
 Wall Street Journal, Dow Jones & Company, 20 Sept. 2012,
 www.wsj.com/articles/SB10000872396390443720204578004980476429190.

[4] Gornall, Will, and Ilya A. Strebulaev. “A Valuation Model of Venture
 Capital-Backed Companies with Multiple Financing Rounds.”
 SRN,5Nov.2020,papers.ssrn.com/sol3/papers.cfm?abstract_id=3725240.
[5] Nakagawa, Alex, et al. “vc_holy_grail-1.” GitHub, 7 Dec. 2017,

github.com/Annyou/vc_holy_grail-1.
[6] Oliphant, T. E. (2006). A guide to NumPy (Vol. 1). Trelgol Publishing
 USA.
[7] Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B.,
 Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python.
 Journal of Machine Learning Research, 12(Oct), 2825–2830
[8] Mary Ann Azevedo, news.crunchbase.com/news
 /austin-reaches-top-10-in-us-venture-markets-with-record-funding-in-2019/,
 13(Jan), 2020

5

Results

Description Training
MSE

Validation
MSE

Test
MSE

Standard
Deviation

Best DL
Model

10 layer leaky
ReLu from
hyperparameter
tuning with L1

1.488 1.260 1.58

Training:
6.5

Validation:
0.61

Overall:4.6

Linear
Regression

Ordinary least
squares (OLS)
linear regression
with L1

2.452 2.339 2.441 N/A

Random
Forest

RandomForest
Regressor model
with n_estimators
= 100

0.153 1.101 1.105 N/A

https://github.com/gautam0831/CS230_Project
https://github.com/fchollet/keras
http://www.wsj.com/articles/SB10000872396390443720204578004980476429190

APPENDIX

Available columns provided by dataset:
company_id, company_name_x, familiar_name, previous_name, exchange,
ticker, employee_count, year_founded, business_status, ownership_status,
financing_status, universe, website, financing_note, full_description,
total_raised_to_date, valuation_revenue, primary_contact_first_name,
primary_contact_last_name, parent_company, sister_companies,
subsidiary_companies, sic_codes, morningstar_codes, naics_codes, cik_code,
customers, market, competition, products, performance_as_of_date, stock_price,
average_volume, shares_outstanding, previous_close,
price_percent_change_1_week, price_percent_change_4_weeks, beta,
X52_week_range_low, X52_week_range_hi, market_cap_tso, eps, p_e,
last_updated_x_x, company_name_y, location_id, location_name, address_1,
address_2, city, state, zip, country, location_type, location_status, office_phone,
office_fax, last_updated_y_x, company_name, deal_id, deal_number,
announced_date, deal_date, deal_size, pre_valuation, post_valuation,
post_valuation_status, ceo_first_name, ceo_last_name, deal_status, deal_class,
deal_type_1, deal_type_2, deal_type_3, stock_type_x, stock_series,
conversion_ratio_x, stock_split_x, percent_acquired, price_per_share_x,
raised_to_date, add_on, total_debt, assumed_liabilities, debt_type_1,
debt_type_2, debt_type_3, debt_amount_1, debt_amount_2, debt_amount_3,
deal_synopsis, financials_period, financials_ending,
debt_raised_in_round_ebitda, debt_raised_in_round_equity, deal_size_ebitda,
valuation_ebitda, deal_size_ebit, valuation_ebit, deal_size_net_income,
valuation_net_income, deal_size_revenue, deal_size_cash_flow,
valuation_cash_flow, implied_ev_ebitda, last_updated_y_y implied_ev_ebit,
implied_ev_net_income, implied_ev_revenue, implied_ev_cash_flow,
total_revenue, gross_profit, net_income, ebitda, ebit, diluted_eps_net_income,
total_current_assets, total_long_term_assets, cumulative, total_assets,
total_current_liabilities, total_long_term_liabilities, total_liabilities,
total_shareholders_equity, total_liabilities_and_equity, Ebitda_margin,
book_value, lt_debt_lt_capital, basic_weighted_average_shares,
diluted_weighted_average_shares, lt_debt_total_capital, implied_ev,
cash_from_operating_activities, participating, cash_from_investing_activities,
cash_from_financing_activities, change_in_cash, cf_net_income, debt_ebitda,
debt_equity, liquidation, revenue_percent_growth, ebitda_percent_growth,
ebit_percent_growth, net_income_percent_growth, last_updated_x_y,
captable_id, series, stock_type_y, price_per_share_y, shares_sought,
shares_acquired, conversion_ratio_y, stock_split_y, liquidation_preferences,
dividend_rights, anti_dilution_provisions, board_voting_rights,
general_voting.rights, shares_authorized, par_value, dividend_rate,
original_price, liquidation_pref_mutliple, conversion_price, percent_owned

Final featured used within the model:
1. employee_count: number of employees
2. year_founded: year company was founded
3. deal_number: unique deal identifier
4. percent_owned: percent acquired through round
5. percent_aquired: percent acquired by investors in

the round
6. pre_valuation: pre-money valuation in round
7. raised_to_date: capital previously raised by

company
8. deal_size: amount raised, in Millions
9. price_per_share: price per share in round
10. post_valuation: post money valuation in round
11. business_status: stage of company, Options

include: Clinical Trials, Product Development,
Generating Revenue, Profitable, Out of Business.

12. ownership_status: who owns the company. Options
include: Publicly Held, Privately Held (backing),
Acquired/Merged, Out of Business

13. financing_status: universe: sic_codes:

14. naics_codes: industry code dictated by the North
American Industry Classification System

15. state: country of company headquarters
16. stock_type_x: type of stock. Options include:

Preferred, Participating Preferred, Combination or
Common.

17. deal_status: status of deal. Some options include:
Completed and Announced.

18. deal_class: type of deal. Some options include:
Venture Capital and Individual.

19. deal_type_2: type of round. Options include: Series
A, Series B, Series C, etc.

20. website: company URL
21. parent_company: parent company of current

company
22. tech_hotspot: yes/no if company in a array of tech

hotspots, sourced from Crunchbase’s list of top
recipient cities of venture capital funding [7] and a
subjectively sourced list of cities that may serve as
ancillary cities to the top ten cities identified ("New
York", "San Francisco", "San Mateo", "San Jose",
"Menlo Park", "Mountain View", "Boston",
"Cambridge", "Seattle", "Berkeley", "Palo Alto",
"Stanford", "Chicago", "Sunnyvale", "Redwood City",
"South San Francisco", "Millbrae",
"Austin","Evanston", "Raleigh", "Durham",
"Cupertino")

23. country: country of company headquarters
24. name: company name
25. board_voting_rights: yes/no if board can vote
26. sister_companies_count: number of sister

companies
27. subsidiary_companies_count: number of

subsidiaries
28. customers_count: number of customers
29. market_count: market the company operates within
30. competition: major competitors of the company
31. products: What products the company sells
32. business_status: Business status. Options include

Generating Revenue, Out of Business, Startup, and
Profitable.

33. Elapsed_announced_deal: Time elapsed between
announcement date and deal date.

6

