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Abstract

In this paper I explore the use of deep convolutional networks and self attention to
learn a mapping from simulated Quantum Monte Carlo ”imaginary time” data to
physically measurable “real time” functions. In particular, I look at the current cor-
relation problem, meaning the data used is designed to approximate an experiment
investigating the behavior of current in a material.

1 Introduction

For many purposes, physicists want to be able to interpolate between interesting, physically measur-
able, dynamic properties of materials and theoretical descriptions of what is going in those material at
a thermodynamic level. However, this interpolation (referred to as analytic continuation) is not trivial,
and thus constitutes a barrier in a whole class of problems which relate thermodynamic properties to
dynamical properties. For condensed matter theory in particular, making progress on any member of
this class of problems would be a significant accomplishment.

In CS 221 I took a first stab at solving a particular member of this class of problems in which the
dynamic property in question was the behavior of current in a material. To test hypotheses about the
underlying thermodynamic theory behind the behavior of electrical currents, physicists create and
study models of systems of interacting electrons and run Quantum Monte Carlo calculations (QMCC)
on those models. The output of those calculations is the function, Λ , expressed as a series of real
numbers corresponding to its values at discrete “imaginary times.” In principal there exists a one
to one mapping between any Λ output and a conductivity function σ which is a function of a real
frequency, ω; σ determines the current in a material in response to an applied electric field. Going
from a calculated Λ to an experimetnally measurable σ is a problem of analytic continuation, which
turns out to be intrinsically hard. The goal of the project was to learn a mapping from characteristic
QMCC outputs, Λ ’s, to their associated σ’s.(9)

For this project, I revisit that current correlation problem, while changing the model used, the nature
of the input data, and, consequently, the problem framing. Based on the hypothesis that any σ function
can be well approximated as a linear combination of potentially simpler functions, I propose trying to
learn a set of parameters which would specify three such ’simple’ functions which, when linearly
combined, yield the true target σ.(4)(2)

2 Related work

The traditional technique to solve this kind of analytic continuation problem is the Max Entropy (Max-
Ent) algorithm. Like most of the other approaches to this class of problem, given an imaginary time
function like Λ(τ), MaxEnt uses regression to predict a dynamic function, like σ, directly.(4)(7)This
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kind of method can makes very reliable predictions but only for fairly smooth functions. It breaks
down when σ has sharp features, which in many interesting cases, it does. (More on this in section
3.) Though my approach to the problem (i.e guessing σ component parameters and weights) differs
significantly from the regression task MaxEnt seeks to solve, it does establish an important baseline
for me. It indicates that, to count as progress on the problem, my model needs to be able to make
accurate predictions when sharp features are present in σ(ω). (The discussion of "accurate predictions
of sharp features" is picked up in section 5.)

Recently Song et al have implemented a tool for computing self energies, another thermodynamically
determined dynamic property like σ, which relies on autoencoders.(1) Both their data generation
process and training loop involve calculations made with something called Dynamic Mean Field
Theory (DFMT) which many would argue introduces a new set of problems.(3) Moreover, the authors’
choice to use DMFT reflects one of their overarching goals: trying to remove notions of domain
bias from their solution. Indeed, this goal is shared among many who have tried to apply deep
learning to analytic continuation problems. However, for my purposes, rather than trying to remove
the constraints of paradigmatic physical framings, I intend to explicitly leverage domain knowledge
to build a tool that is designed to aid physicists in their analysis. Furthermore, Song et al. employ ML
(in the form of their auto-encoder) in just one step of a 5 step computation loop. These facts, and
the fact that determining self energy tends to be a considerably easier problem, again distinguish our
methods and problem farmings significantly.

Looking at the deep learning literature more broadly, I found that 1D convolutions had been used
successful to learn information from time series functions, like in the case of echocardiograms.(6)
Cordonnier et al’s recent paper On the Relationship between Self-Attention and Convolutional Layers
presents the argument that multi-head attention models can learn representations that are at least as
expressive, if not more expressive, than those learned by convolutional neural networks (CNNs). (8)
Based on this I chose to experiment with CNN’s and attention heads in my model architecture.

3 Data

3.1 Underlying Physics and Understanding the Data

The goal of my project is to build a network able to map the output of QMCC to a real valued function
of the sort that can be measured experimentally in a lab. The imagery time function Λ is characteristic
of the kind of data a QMCC system would output.

In some archetypal cases, the behavior of a material is dominated by a single, theoretically well
characterized process, for which a functional description of the measured σ and the corresponding
Λ are known. More complicated (and interesting) materials display properties associated with
more than one of these archetypal processes. Thus, more generally, it is reasonable to expect (and
experimentally observed) that σ can often be well approximate as a linear combination of a few
archetypal contributions to σ.

To begin with, I will consider a case in which σ is the sum of three functions, all with the same func-
tional form but with different values of the parameters that control their behavior. The conductivity’s
of many metals can be well described this way.

In particular, for this project, I will experiment with a dataset where all the candidate σ’s have the
"Drude functional form," characteristic of a Fermi Liquid. The parameters in a Drude conductivity
are an overall weight α and a parameter γ, known as the scattering rate, which determines the width
in frequency for which the conductivity is significant. (For a continued discussion of my choice of
material, see Appendix section 1).

3.2 Data Generation

A single Drude conductivity is described by the function

σ(ω) =
γ

ω2 + γ2
. (1)

So as to have a model of the temperature dependence of γ, we split the generation of this parameter
up into two terms. Together we represent a single γ parameter evaluated at temperature T as follows,

γ = γ0 + γ1 ∗ T 2 (2)
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Each Λ in my dataset is a linear combination of the Λ’s associated with three unique σ’s of this
form. We consider the problem in a range of temperatures, T ∈ [0.1, 0.2, ..., 1.0] and we borrow the
parameters determining σ to derive Λ at each T so that for each example:

ΛT = α1Λ1(γ01 , γ11 , T ) + α2Λ2(γ02 , γ12 , T ) + α3Λ3(γ03 , γ13 , T ) (3)

where the coefficients αi are sampled from range [0,1], and we ensure that
∑3
i=1 αi = 1. When

generating data, we can choose 1 of 4 distributions from which to sample γ0’s and γ1’s. (Note that
regardless of distribution, all γ’s will be floats in the range 0 to 10.) The distribution options represent
σ’s which we expect to be hard to guess at high temperature, hard to guess at low temperatures, hard
to guess at all temperatures or easy to guess at all temperatures. (For more on the distributions from
which γ’s are sampled, see section 3.3.)

Together, three sets of the parameters αi , γ0i and γ1i comprise one label (as in equation (7)). Using
the label, we can generate a training example. For each term Λi(τ) we evaluate the following equation
at 200 values of τ (which range between 0 and 1/T).

Λ(τ) =
1

γ
+ F (τ, 0) + F (τ, γ) (4)

F (τ, 0) = −(
1

2π
)(log(4 sin2(πτ)) + ε (5)

F (τ, γ) =

∞∑
i

cos(2πiτ)

γi+ 2πi2 + ε
(6)

where ε = 1/4000 and is included for numerical stability. I approximate (6) by summing the first
1000 terms. This 1000 comes from the parameter lambda_precision, This value can be changed to
effectively increase or decrease data noise in future experiments.

We then take the element wise sum over all three 200-dimensional vectors produced this way, so that
Λ =

∑3
i=1 αiΛi. We do this at 10 temperatures so that each input is a 10 by 200 matrix of floats. We

can represent Λ evaluated at each T as ΛT . So finally, each training example ends up as a 10 by 200
matrix, with a 3 by 3 dimensional label formatted as followsΛ0.1(τ1) Λ0.1(τ2) ... Λ0.1(τ200)

Λ0.2(τ1) Λ0.2(τ2) ... Λ0.2(τ200)
.....

Λ1.0(τ1) Λ1.0(τ2) ... Λ1.0(τ200)

[
α1 γ01 γ11
α2 γ02 γ12
α3 γ03 γ13

]
(7)

3.3 Datasets

I have three datasets on which I ran experiments. Each dataset contains 2,000 training examples, 200
validation examples and 200 test examples. What varies across the datasets are the constraints placed
on the sampling of γ0 and γ1. The particulars of each set of constraints are elaborated on Figure 1 of
the Appendix.

The first data set is "easy_data" in which, for each example, σ1, σ2, σ3 are all chosen to have γ’s
which satisfy the constraints listed under ’Easy at all T’ in Figure 1. The second is "mixed_data"
in which, for each example σ1, σ2, σ3 are all sampled from the same distribution. In this data set
that common distribution was randomly chosen for each example from the set [Easy at all T, Hard at
high T, Hard at Low T]. The final dataset is "element_mixed_data" in which, for each example, σ1 is
sampled from the ’Easy at all T’ distribution, σ2 is sampled from the ’Hard at high T’ distribution
and σ3 is sampled from ’Hard at low T’ distribution.

4 Models

The different manner in which the label elements were generated suggested a multitask approach.
The αi’s are evaluated at one task head, while the γ0i and γ1i ’s are evaluated at the second task head.
Unless otherwise specified, in each architecture I experimented with, each task head consists of one
additional Fully Connected Layer as depicted in the Out Block details in the image bellow.(6)

Leading up to the Out Block, after experimenting a little with various depths and hyper parameters, I
chose the architectures depicted bellow to respectively use as the 1D Convolutional Network, the
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2D Convolutional Network and the Attention Network in my experiments comparing model types. I
did not spend much time tuning hyper parameters as, for the scope of this project, I was primarily
interested in starting a high level investigation into the capabilities of different models constrained to
similar sized embedding spaces. (Note that, in the interest of space, the details of the Attention Head
can be found in figure 2 in the appendix, as can a blown up version of this image for better readability)

4.1 Loss

The αi’s can be thought of as representing a probability distribution over the three constituent
functions. Thus I use KL-Divergence as the loss for this task head. As the αi’s sum to one 1 I apply
a softmax before calculating the Loss. As each γ0i and γ1i are real numbers between 0 and 10, I
simply use mean squared error for the second task head.

If I were to plot σ(ω) for a given training example there are two aspects a physicist would care about
getting right: the shape of the curve and its behavior at ω = 0. Close to σ(0) is where we see the
sharp function features mentioned in the related work section that are particularly hard to get right.
Thus, I experimented with adding a term to the loss which explicitly incentivizes precision at σ(0),
calculated as follows:

σ(0) =
α1

γ1
+
α2

γ2
+
α3

γ3
(8)

Where γ is computed according to equation (2). Using this I define three different loss functions. In
the following assume that hat indicates a predicted value, ~α is a 3 dimensional vector containing all
three αi’s, ~γ is a 6 dimensional vector containing all three pairs of γ0i , γ1i stacked linearly.

Loss 1: KLDiv(~̂α, ~α) +MSE(~̂γ, ~γ)

Loss 2: 0.9(Loss1) + 0.1(MSE( ˆσ(0), σ(0)))

Loss 3: 0.5(Loss1) + 0.5(MSE( ˆσ(0), σ(0)))

5 Experiments and Conclusions

There are three elements which vary across experiments - 1. the model used, 2. the data used and 3.
the loss function used. Furthermore, there are two ways in which I determine the success or failure
each experiment. The first is the usual - by looking at losses and inspecting predictions. The second
is by looking at the shape and precision per frequency of σ(ω). To do so, I graph something called
the fractional error of σ(ω). The fractional error is represented as a plot of σ(ω)σ̂(ω) vs ω. In the ideal

case, for all temperatures, the plot of fractional error would contain only straight lines at σ(ω)σ̂(ω) = 1.

Still, if a model could consistently get σ(ω)σ̂(ω) in the range of about 0.8 to 1.2 for all temperatures, it
would be a significant accomplishment and usable in real physics experiments.
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For reference here is an example of 2 sets of graphs with which we can compare predicted vs target
σ’s. They are organized into sets of three where from left to right you see the plot of the true target
σ(ω), the predicted σ(ω) and the fractional error, all plotted against frequency, ω. To contextualize
the discussion, the left cell shows graphs associated with an average to good result where as the right
shows graphs associated with a very bad prediction.

Training on the easy_data dataset, all of the models were able to guess γ0i’s and γ1i’s reason-
ably well (i.e. made guesses that where within ±1 of the target) for many, if not most examples.
However, the models where not able to get much of a signal on αi’s, guessing close to a 0.33
weighting for each component σ across all examples. A similar if slightly less pronounced effect
happened when training on mixed_data. The attention model was slightly unique in this as, for
all datasets, but particularly when trained on the element_mixed_data, it had a tendency to put all
the weight in one component σ such that one of σ1, σ2, σ3 ended up being very close to 1 while
the other two where close to zero. These factors suggests that when all the γ parameters are sam-
pled from the same distribution, it does not result in enough diversity to, when linearly combined,
produce a new σ which is outside of that distribution. My approach in this case is probably not
as useful as in cases in which the true sigma is a more complex function. It also suggests that
it may be worthwhile to try and use the attention model to guess the true σ functions directly.

It is also worth
noting that, de-
spite not getting
the parameter val-
ues correct, on
the easy_data es-
pecially, all of
the models where
able to do fairly

well in guessing the form of the σ function as illustrated here.

Overall I would say that the Attention Network performed best. It consistently predicted at least a
third of the examples in the hardest dataset, element_mixed_data, correctly within a use-able range
(i.e. the fractional error more or less stayed in the range 0.8 to 1.2), and was able to do so regardless
of the loss function used.

The 2D Convolutional Network when trained with Loss 1, performed as well as the Attention
Network, if not better on certain runs. This includes equal performance in terms of predicting near
zero frequency values of σ. However, interestingly the model which performed by far the worst
was also the 2D Convolutional Network when it was trained with loss 3. It will take a little more
investigation to figure out what this means, but I think it suggests something very philosophically
interesting about the nature of the information contained in different sections of the data. The 1D
Convoltional Network was much less sensitive to changes in the loss function, re-enforcing the idea
that the 2D spacial decomposition is extracting potentially quite different information from the other
two models. (A visual comparison of the experimental results of the 2D Conv Network and the
Attention Network can be found in Appendix Figure 3.)

I am overall very pleased with the results I have gotten thus far an intend to continue to experiment
with Attention, 2D convolutions and tweaks to the data and problem framing.

5



References
[1] Song, Taegeun, et al. “Analytic Continuation of the Self-Energy via Machine Learning Tech-

niques.” ArXiv.org, 27 July 2020, arxiv.org/abs/2007.13610.

[2] R.N. Silver, D. S. Sivia, and J. E. Guber- natis, “Maximum-entropy method for analytic continua-
tion of quantum Monte Carlo data,” Phys. Rev. B 41, 2380 (1990)

[3] Vollhardt, Dieter, et al. “Dynamical Mean-Field Theory.” Cond-Mat.str-El], 22 Sept. 2011.

[4] Mehryar. Lecture: Foundations of Machine Learning Maximum En- tropy Models, Logistic
Regression. Https://Cs.nyu.edu/ Mohri/Mls/ml maxent models.Pdf, NYU and Courant Institute
and Google Re- search.

[5] Yoon, Hongkee Sim, Jae-Hoon Han, Myung. (2018). Analytic continuation via ’domain-
knowledge free’ machine learning.

[6] Khan, A., Sohail, A., Zahoora, U. et al. A survey of the recent architectures of deep convolutional
neural networks. Artif Intell Rev 53, 5455–5516 (2020). https://doi.org/10.1007/s10462-020-
09825-6

[7] Jarrell, Maximun Entropy and Analytic Continuation. Lectures on the Physics of Strongly
Correlated Systems XII, www.phys.lsu.edu/ jarrell/Green/MEM_Salerno.pdf.

[8] Cordonnier, Jean-Baptiste, et al. “On the Relationship between Self-Attention and Convolutional
Layers.” ICLR 2020 Conference, 25 Sept. 2019.

[9] Kivelson, Sophia. Using NN’s to Approximate Real Time Current Correlation Functions. CS 221
Final Project.

[10] Venkatachalam, Mahendran. “Attention in Neural Networks.” Medium, Towards Data Science,
7 July 2019, towardsdatascience.com/attention-in-neural-networks-e66920838742.

Appendix

A Why Fermi Liquids?

Fermi Liquids are desirable for my purposes for a few reasons. Firstly, by varying the parameter γ,
we can find σ(γ)’s which exhibit all the behaviors that make the Λ to σ mapping challenging. The
first major one of these challenges is the presence of sharp features in σ, where by sharp features I
mean having regions in which the variation in σ is large compared to the width of the interval over
which ω is varied (in units of the temperature T ). This occurs whenever γ is small compared to
the temperature. The second is that if I were to define σ =

∑
i=1 αiσ(γi) - i.e. if I had a some

Fermi Liquid in which the behavior of current could be given as a linear combination of the σ’s of
differently parameterized Fermi Liquids (weighted by coefficients α) - then I could expect σ to have
the following properties: Firstly, if any of the σi’s in the sum are ’hard’ (have small γ’s), then the
resulting σ will also be a ’hard’ example to classify. Secondly, even if the αi weighting that ’hard’ σi
were small, it is possible for it to have a very disproportionate effect on σ. In addition to capturing the
characteristic challenges of this current correlation problem, for any σ of this form, we can solve for
Λ given a σ with a relatively simple equation. This means, using linear combinations of differently
parameterized Fermi Liquid σ functions, I can relatively easily create a training dataset mapping
between Λ’s and σ’s which captures the intricacies of the true problem. In other words, if I can build
a model that performs well on this kind of dataset, then that model is very likely to be usable on
generic QMCC data.
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B Figures

Figure 1

Example data with annotations for how to sample γ0 amd γ1
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Figure 2

Model building blocks and architectures

8



Figure 3
Experiment Results: Shown below are characteristic results from training each model with the loss
listed.
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