
Analysis of the Effectiveness of Temporal Point Cloud
Data for Object Classification and Perception in

Autonomous Vehicles

Matei Armanasu
Stanford University

armanasu@stanford.edu

Shrividya Manmohan
Stanford University

shrivid@stanford.edu

Yuhao He
Stanford University

yuhaohe@stanford.edu

Abstract

Most algorithms for classification and semantic segmentation of 3D point clouds
ignore readily available temporal information, motivating us to explore the effects
of this information in object detection. We evaluate extending standard architectures
to include timestamp data, creating a 4 + C dimensional data input to a network
when C other features are included. We show that for pre-existing architectures,
treating time as an extra feature outperforms simply adding more data, and discuss
the difficulties of creating and evaluating a recurrent network with the current
state-of-the-art 3D encoders.

1 Introduction

3D object detection is a necessary component of autonomous driving systems. Stories of crashes and
fatalities with autonomous vehicles often describe classifications “flickering” or quickly changing
between different object types, resulting in the vehicle being unable to make a correctly informed
decision about how to proceed. Comparatively, drivers use a short period of time to observe (and
react), and do not need to re-predict the existence of nearby vehicles. This idea of continuous
observations inspires us to explore if temporal/sequential information of 3D objects can improve
the performance of object detection. While object detection models in OpenPCDet use point clouds
generated from a union of randomly sampled sweeps, our model uses a sequence of point clouds
that are sampled consecutively in time. Regardless of different approaches, both types of models
use point clouds as inputs and output bounding boxes, class labels, and objectness scores. We use
PointPillar[3] as our baseline 3D detection model, and use a recurrent spatial encoder network in
parallel to generate temporal features.

2 Related work

3D Point Cloud Detection

3D object detection has been a critical area for autonomous driving. Datasets like kitti [1] provide
point cloud snapshots of traffic scenarios collected by a laser scanner and many models such as
Part-A∧2, SECOND, PointNet++ and PointPillar utilize these datasets [2, 3, 4, 5, 6]. Despite their
differences in approaching object detection, traditional models put emphasis on detections within
individual point clouds and few of them incorporate temporal information.

CS230: Deep Learning, Fall 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Temporal Point Clouds

In recent years, datasets with explicitly temporal LIDAR sequences such as nuScenes lidarseg were
released [7]. There were some efforts to adapt previous 3D detection models on these datasets;
however, instead of pursuing the spatiotemporal relations, these approaches take timestamps merely
as an extra feature in addition to x, y, z coordinates. On the other hand, some studies try to explore
the benefits of using multiple surrounding frames of inputs [8, 9]. For instance, TPointNet++
aggregates information over time to construct object shapes and build generalizable continuous
representations/encodings of these objects, so that it can perform detections by sampling from the
sequence of these encodings given spatiotemporal information of inputs [8]. As another exploration
of leveraging temporal information, our study evaluates whether directly encoding of sequences of
point clouds can improve the performance of object detection.

3 Dataset and Features

We are using the nuScenes dataset, which contains a series of LIDAR sweeps from self-driving car
sensors stored as 3D point clouds. The full nuScenes dataset contains 700 scenes for training and 150
scenes for validation. We are primarily interested in the LIDAR and keyframe data from nuScenes.
Each scene contains 20 seconds of LIDAR sweeps at the frequency of 20HZ and in total nuScenes
contains 1.1 billion annotated points across 34,000 point clouds. Each point cloud consists of a
number of successive sweeps, with approximately 26,414 points per sweep (with some variance due
to imprecision when removing points that fall on the vehicle itself.)

Figure 1: Left: visualization of a single sweep from nuScenes. The colored boxes are ground
truth boxes that mark the segmentations. Right: visualization of a full point cloud input created by
OpenPCDet through concatenating 10 sweeps, and undoing the egocentric motion of vehicles.

We process nuScenes data via OpenPCDet’s data handling pipeline [10]. The result is a 3D point
cloud constructed from successive sweeps over a span of time, with each point retaining two feature
dimensions representing the intensity of the LIDAR response as well as the time lag relative to the
ground-truth annotated sweep (i.e. each point is represented as <x, y, z, intensity, time delay>).
OpenPCDet constructs the data in this way in order to develop a denser point cloud representation to
feed into different models without explicitly exploring the effect of including temporally-separated
data. We explore varying the total number of points and the temporal range of the component sweeps
as part of our analysis on the impact of temporal information to these networks. We achieve this by
introducing two hyperparameters to their data loading pipeline: λmax and λrel. When sampling a
point cloud as input, we select λmax total sweeps, and downsample the number of points in each
sweep by the fraction λrel / λmax, resulting in a point cloud that has as many points as one with only
λrel distinct sweeps. When adjusting these hyperparameters, we denote the choices as (λmax / λrel).

2

4 Methods

Initially we were interested in adapting the PointRCNN model [11] from OpenPCDet to train it on
nuScenes. However, the specificity of tuning required in this domain and a lack of information on
the logic behind existing hyperparameter choices meant we had little success in this approach. (See
Appendix 7.1 for a visual comparison of the losses).

In addition, poorly documented code and a fragmentary codebase meant that resolving errors in
evaluation was intractable with this architecture, and these errors inevitably continued to cause
issues with future testing. Therefore, we shifted focus to simpler, pre-existing architectures already
well-tuned for nuScenes. Particularly, we chose PointPillar-MultiHead. PoitnPillar learns the
representation of a point cloud by organizing points into voxels in shape of vertical columns. Despite
weaker performance metrics as drawn from OpenPCDet, its 3D backbone is a simple feature encoder
that lends itself well to development.

We extend this backbone by constructing a full PointNet architecture [6] to generate global point
cloud features. PointNet is a simple architecture that can create spatial encoding; it uses a max
pooling function as a symmetric function to destroy the ordering information to make the model
insensitive to data permutation. In other words, we can input an arbitrary number of points to a
PointNet, and it will output encoding for each point and also the entire point cloud simultaneously.

To connect the global features of sequential sweeps, we replace the final dense layers of PointNet with
recurrent GRU layers, and then feed in consecutive sweeps. When performing semantic segmentation,
PointNet appends the global information to each point; similarly, we concatenate the resulting global
features to the voxel features created by the standard PointPillar backbone. To illustrate, suppose
si is the i-th sweep, initial state of the hidden unit is h0 = ~0, and PointNet(x) : Rn×(3+C) → Rm

where Rm represents the global features, we have:

gi, hi = GRU(PointNet(si), hi−1), i ∈ {1, 2, ..., |S|}

... and we will append global features g|S| to each of the pillar-like voxels.

The intuition here is that a recurrent network may be able to detect the continued presence of certain
object classes such as motorcycles or bicycles, and alert the later layers to that class’ presence in the
point cloud through the global features. Below, we offer a diagram of our network on top of the base
PointPillar network, using the same module-style diagrams that OpenPCDet displays.

3

5 Experiments and Discussion

5.1 Setup

For our experiments, we were limited rather significantly by the range of parameters we wished to
explore and the computational cost of training on such large data inputs. As a result, we chose to
explore 4 different combinations of (λmax/ λrel): (5/5), (10/5), (15/5), and (10/10). The final choice
(10/10) results in taking in point clouds equivalent to those processed by the pretrained models and
serves as a comparison of compute power as well as the comparison of the effect of merely adding
more points to the input, while the other three selections compare the effects of an ever increasing
time window. We expect that if the time span grows too large, the base model’s performance is likely
to decrease, as the model will be working with outdated information. For our engineered model, we
expect that it will still perform well even with older information due to the recurrent backbone.

Originally, we reused the hyperparameters provided by the original PointNet architecture. Due to
memory limitations, we downsized the kernels and the output global features (from R1024 to R128).
Both input and output feature size of the GRU are at least the same as the number of PointNet’s global
features as a smaller number may cause loss of global spatial information. We kept PointPillar’s
default parameter for output features (64), which means the each voxel will have 64 + 128 = 192
features before being fed into the 2D backbone.

For mini-batch sizing, we selected a batch size of 2 as this was the largest we could manage on the
available hardware without running into memory issues. Besides, our recurrent PointNet requires
an equal data size for all batches within a sweep, but the number of points sampled at a sweep can
have huge variations across scenes/batches. To balance the input sizes across batches, we apply
simple padding and downsampling for every sweep. Suppose pmax is the number of points in the
largest batch and pmin is the number of points in the smallest batch. When pmax ≤ 2pmin, we apply
padding to any batch b with pb < pmax, which means we duplicate (pmax - pb) random points to
make equal size; otherwise, we consider the difference between batches is too large and downsample
any batch to pmin points to achieve equal-size batches.

All other parameters (e.g. NMS, anchors, regularization) were taken from OpenPCDet, under the
assumption that they were well-selected for the base model and concatenation of extra features would
not require a change to the learning rate.

5.2 Effects of temporal information on traditional networks

We trained the original PointPillar-Multihead model with the λmax/λrel combinations described
above. Namely, this model merely takes in temporal information as an additional feature of a point.

λmax/λrel mAP mATE mASE mAOE mAVE mAAE NDS
Pretrained (10/10) 0.4463 0.3387 0.2600 0.3207 0.2874 0.2015 0.5823
(5/5) sweeps 0.1496 0.5275 0.4936 0.7162 0.7640 0.3220 0.2924
(10/5) sweeps 0.2221 0.4348 0.2945 0.6534 1.2613 0.3429 0.3385
(10/10) sweeps 0.2292 0.4919 0.2896 0.7514 0.7806 0.2749 0.3558
(15/5) sweeps 0.2652 0.4432 0.2750 0.5864 1.1728 0.2834 0.3738

We consider mAP, or mean Average Precision, as our primary metric, with perfect performance
represented by a mAP of 1.0. The next 5 metrics are various errors we wish to minimize, with the
final metric we wish to maximize devised by nuScenes as a weighted average of the others, labeled
as "NuScenes Detection Score".

We can observe that the largest sampling window leads in most metrics, especially mAP. This result
indicates that even treating temporal information as an extra feature can improve the performance of
traditional networks. We did not observe a drop in performance with a larger window, meaning that
we can increase λmax for this model to achieve better metrics.

5.3 Effects of temporal information with our recurrent PointNet

Due to memory limitations, the global features are only calculated on subsamples from the entire
set. A more powerful network might be able to achieve significantly more powerful global features

4

than our implementation. In addition, due to continued issues with the evaluation code for any model
not out of the box, we were unable to actually obtain mAP or similar metrics for our own network,
relying instead on the validation loss as our most useful obtainable metric.

(λmax/λrel) (5/5) (10/5) (10/10) (15/5)
Validation loss from traditional network (PointPillar) - - - .594
Validation loss from recurrent point cloud encoder .872 .865 .792 .846

Again, we can observe some improvement with a larger sampling window. However, this may be
attributed to the improvement from the traditional network. Also, the best performance does not
come from the largest sampling window, indicating that the sampling window is too large for the
recurrent encoder that is more sensitive to outdated data from earlier frames.

Besides, even though we were unable to obtain metrics from evaluation, we can still see that our
recurrent PointNet has a worse training loss when both networks were trained for the same amount of
epochs, which may indicate some flaws in the architecture. The fact that we used global features of
the entire point clouds and even downsized those features due to memory limitations can contribute
to an encoding method being too general for localization which will not help much in segmentation.

6 Conclusion and Future Work

Our experiments demonstrated that while keeping the input size the same, more spatiotemporal
information can be effective in improving traditional object detection methods, and we suggest to
treat the size of the sampling window as hyperparameters. The recurrent point cloud encoder does
not seem to provide a convincing improvement to the detection performance, possibly due to global
features being too general.

If we had more computational power and time, we would try to increase the number of global features
output by our global in the recurrent network and use a more complex global encoder, PointNet++.
Also, given that global features may not represent regional details well, we would like to investigate
the possibility of splitting point cloud into partitions to run the recurrent PointNet on separately.

In addition, we would like to replace the GRU layer with an LSTM layer in our recurrent 3D encoder.
Even though time only increases in its axis, the earlier frames of a sampling window may still
contribute to the detection of the current state, which gives us the motivation to use LSTM. Training
LSTM, however, takes much more time. Given our limited resources of computations (one 11GiB
GPU), this time cost was unmanageable: while training one 1 epoch of our network using GRU takes
27 hours, training with LSTM would take 55+ hours.

Lastly, we want to explore furthest point sampling [12]. As mentioned in experiments, we downsam-
pled our data size into 2500 points randomly. The furthest point sampling method chooses points
uniformly distributed over each point cloud and covers the least known areas, which may give us a
more optimal set of points.

Working with OpenPCDet’s pipelines, while theoretically allowing us to move straight to model
development and use pretrained hyperparameters, resulted in a significant amount of efforts to
understand the structure of the code and debugging areas where it was likely not meant to be extended.
Many of the issues encountered were never resolved, such as model results being produced only
during training despite running on the same inputs as during testing (leading to our inability to
visualize model outputs). Also, we had very limited access to computational resources, which means
our debugging attempts and iterations were extremely time-consuming: with only one 11GiB GPU,
training one epoch on the mini dataset took over 25 minutes and at least 27 hours on the full dataset.
These challenges combined meant that much of our time was spent in areas that do not reflect on the
improvement of our model, and perhaps indicates a lack of maturity or standardization in point cloud
model development. While our results show promise, conclusive results will rely on the ability to
dedicate significantly more development time, debugging time, and computing resources to testing
these ideas than was available to our group.

7 Contributions

Code: Github Repository

5

https://github.com/barryhe/OpenPCDet

Matei Armanasu: worked on data loading modifications, recurrent architecture development, and
resolving issues with OpenPCDet.

Shrividya Manmohan: worked on cloud environment setup and running training and evaluation on
EC2 instances and monitoring the training via Tensorboard.

Yuhao He: worked on the sweep processor & batch balancer, the recurrent PointNet with both GRU
and LSTM, and optimization of GPU usage.

8 Acknowledgement

We are grateful to Davis Rempe for this project idea and valuable insights on modeling strategy and
architecture design.

References

[1] Geiger, Andreas, et al. "Vision meets robotics: The kitti dataset." The International Journal of Robotics
Research 32.11 (2013): 1231-1237.

[2] Yan, Yan, Yuxing Mao, and Bo Li. "Second: Sparsely embedded convolutional detection." Sensors 18.10
(2018): 3337.

[3] Lang, Alex H., et al. "Pointpillars: Fast encoders for object detection from point clouds." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[4] Shi, Shaoshuai, et al. "From points to parts: 3d object detection from point cloud with part-aware and
part-aggregation network." IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

[5] Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric
space." Advances in neural information processing systems. 2017.

[6] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[7] Caesar, Holger, et al. "nuscenes: A multimodal dataset for autonomous driving." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[8] Rempe, Davis, et al. "CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations." Advances
in Neural Information Processing Systems 33 (2020).

[9] Liu, Xingyu, Mengyuan Yan, and Jeannette Bohg. "Meteornet: Deep learning on dynamic 3d point cloud
sequences." Proceedings of the IEEE International Conference on Computer Vision. 2019.

[10] Shi, Shaoshuai, et al. “Open-Mmlab/OpenPCDet.” GitHub, 2019, github.com/open-mmlab/OpenPCDet.

[11] Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li. "Pointrcnn: 3d object proposal generation and
detection from point cloud." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019.

[12] Moenning, Carsten, and Neil A. Dodgson. Fast marching farthest point sampling. No. UCAM-CL-TR-562.
University of Cambridge, Computer Laboratory, 2003.

Appendix

8.1 Adapting PointRCNN

6

Figure 2: Left: loss curve of Second-MultiHead after 80 iterations (< 1 epoch); Right: loss curve of
our adapted PointRCNN with adjusted learning rate and regularization after 9k iterations (65 epochs)

7

	Introduction
	Related work
	Dataset and Features
	Methods
	Experiments and Discussion
	Setup
	Effects of temporal information on traditional networks
	Effects of temporal information with our recurrent PointNet

	Conclusion and Future Work
	Contributions
	Acknowledgement
	Adapting PointRCNN

