Learning low-dimensional representation for
whole-genome gene regulatory elements

Zan Xu
Department of Aeronautics and Astronautics
Stanford University
SUNet ID: zanxu
zanxu@stanford.edu

1 Introduction

One of the main challenges for research in genomics is to identify functional elements in the
genome,[|1]] especially gene regulatory elements that play a vital role in transcriptional regulation,
cell differentiation, disease development. As shown in Figure[T] gene regulatory elements, such as
promoters, enhancers, silencers, insulator, are short regions of non-coding DNA sequences that reside
in open chromatin in a cell type-specific manner and are bound by sets of transcription factors for
positive or negative transcriptional control.[2]][3]] This project aims to take DNA sequences as input
and uses encoding/embedding techniques from NLP to learn low-dimensional representations of
genetic regulatory elements in order to facilitate their downstream analysis.

Figure 1: The different types of gene regulatory elements

2 Literature Review

The most common approach to encode a DNA fragment is one-hot encoding, which encodes the
nucleotide in each position as a four-dimensional one-hot binary vector representing one type of
nucleotide A, C, G, T respectively. [4][5] For predicting functionality of DNA sequences, various
neural network archtectures have been explored, such as CNNs [6][7], RNNs [8]] or hybrids of the two
[9]. Some have also incorporated k-mer representation (which simply means subsequences of length
k) and word embedding in order to improve the performance [8]][[10]. To build on these models, I
would like to apply the attention model to the embedding representation to improve the prediction
accuracy as well as to hopefully identify patterns that earlier models of neural network architectures
failed to capture.



3 Dataset and Features

For the unsupervised learning phase, each chromosome is divided into 200 bp (base pair) bins, where
each bin can be recognized as sentence and each chromosome can be recognized as corpus. For the
supervised learning phase, enhancers and silencers are identified using ChromHMM]|11]] for Human
Embryonic Stem Cell Lines (HESC) cell lines. The sequence of these identified regulatory elements
can be obtained through getfasta [12], which are in the form of DNA subsequences with varying
lengths on the order of ~ 10,000. To suit for classification task laters on, we split the different
forms of regulatory elements as positive and negative samples. E.g. the identified enhancers are
labelled as positive samples whereas silencers are collected as negative samples. For the scope of this
study, around 2, 000 enhancers and 2, 000 silencers with highest confidence scores are collected and
annotated for downstream training process.

4 Methodology

unsupervised learning
DNA sequence K-mers
. ACGTAACAC .. ...| ACGTAA | CGTAAC | GTAACA | TAACAC |...
. ACGTCATGA .. ...| ACGTCA | CGTCAT | GTCATG | TCATGA |...
split into Language Embedding
k-mers Model* matrix, E
. TGCCACTGA .. ...| TGCCAC | GCCACT | CCACTG | CACTGA |...
CGTTTAAAC .. ..| CGTTTA | GTTTAA | TTTAAA | TTAAAC |...
Sampled sequence K-mers
. GCTACATGA .. —SPItito . TGeTaca | CTACAT | TACATG | ACATGA |. €004 | €102 | €4033 | €1087 | -

Neural Network** output

Figure 2: The computational framework consists of two components: the unsupervised learning
component (Section4.T) and the supervised learning component (Section[4.2)

4.1 Unsupervised learning phase: embedding

Given a DNA subsequence, we split it into k-mers using sliding window with stride s along a sequence,
meaning that two adjacent k-mers have a distance of s bps. Thus, in general, a sequence with L bps
can be split into floor [(L-k)/s]+1 k-mers. For example, we could split “ATGCAACAC” into
four 6-mers with stride s = 1 as “ATGCAA”, “TGCAAC”, “GCAACA” and “CAACAC” (Figure @
Note that the vocabulary size for k-mers is 4*. These k-mers are then grouped into sentences. We
feed these sentences into various language models, such as Word2Vec to obtain embedding matrices
of size 4% x n, where n is the dimension of the embedding vector. The embedding matrix is then
used in subsequent supervised learning tasks.

4.2 Supervised learning phase: classification prediction

To analyze the generated embedding matrix, we encode DNA subsequences of gene regulatory
elements and use the encoded representation in a classification task to test for performance. The
idea is analogous to sentiment analysis. First, DNA subsequences of gene regulatory elements are
pre-processed into sentences of k-mers, similar to the embedding pre-processing step. The embedded
vectors of kmers in each sentence are then retrieved and fed into a classifier for prediction.

4.3 Integration

Though language models provide embedding matrices that not only reduce the dimenisonality of
the inputs, but also improve the performance of classifiers, they can be integrated into the classifier



Table 1: Performance metrics under different NN architectures
AUC  Accuracy

Averaging 0.615  0.6185
CNN 0.613  0.6210
LSTM 0.582  0.6063

LSTM with attention 0.619 0.6208

as a set of trainable hyperparameters to be adjusted for particular tasks. In this project, different
forms of classifiers are used to train the model as well as the embedding matrix in order to obtain the
low-dimensional representation of the embedding matrix.

5 Evaluation

As the aim of this project is to explore the low-dimensional embedding performance in various
classification tasks, the major hyperparameter to choose is the neural network architecture. The
performance of the overall model is evaluated based on AUC and accuracy. The most simplistic
model uses a simple averaging layer to average the embedding vectors in each sentence. The average
is then fed into a single neuron with sigmoid activation for classification. Since averaging can be
considered as a special case of convolutional operation, another model incorporating CNN and
pooling operations is also tested. If the kmers are treated as sequence data, RNN or its variants are
suitable candidates as well. Hence a sequence model using LSTM is tested. In addition, an attention
mechanism is added to explore the emphasis among different kmers. The results of various models
are summarized in Table [T] and their ROC curves plotted in Fig[3] The overall accuracy among
different model architectures is not high, around 0.61. LSTM with attention model outperforms other
models by a small margin. It is noted that these models are used as baseline comparisons and none
of them are exploited with large number of hyperparameters. Therefore, the comparison in TableT]
shows that no one particular architecture has a competitive edge in this case though exploring a larger
hyperparamter space can potentially improve the performance at the expanse of computational costs.

Qualitatively, the embedding matrix from the best performing test case is projected non-linearly to a
low-dimensional space and visualized using t-SNE. The plot (Fig. @) show that there exists some
form of clustering among different kmers induced by the classification task and there is potentially
an underlying relationship among kmers that can be exploited to aid in gene regulatory element
prediction tasks.
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Figure 3: Performance metric ROC of different NN architectures



Figure 4: t-SNE plot of embedding matrix

6 Conclusion

In this work, I try to apply word embedding and sentence embedding methods in NLP to genomic data.
In the unsupervised phase, the results show that using k-mer as words and taking the deep learning-
based embedding framework, the embedding vectors of different types of regulatory elements can
be extracted in a lower-dimensional form successfully. In the supervised phase, the results show
that deep learning methods however, do not always perform well. The performance of embedding
matrix in classification task seems to be insensitive to the model architecture under the choices of
hyperparameters considered. Some future work includes expansion to larger hyperparameter spaces
in order to explore the performance of various classification models. In addition, more advanced
language models such as GloVe, Transformer, BERT can be used to pre-train the embedding. Lastly,
network architecture such as graph convolutional neural network can be potentially helpful as well to
capture the 3D effect of entanglement of proteins.
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