Automated Topic-Tagging for Software-Related
Question-and-Answer Sites

Ankur Agrawal Ryan A. Chi
Department of Computer Science Department of Computer Science
Stanford University Stanford University
ankuragr@stanford.edu ryanchi@cs.stanford.edu

Varuni Gupta

Department of Computer Science
Stanford University
varuni@stanford.edu

Abstract

The software engineering domain produces a large amount of textual data, com-
prising a mixture of code, technical jargon, and natural language. Consequently,
the correct classification and tagging of such data is an open problem in both
community question answering (CQA) websites and massive open online Course
(MOOC) forums in the domain. As such, an automated approach to the task would
save both time and effort. In this work, several different models to automatically
tag forum posts on Stack Overflow were developed, featuring convolutional neural
networks (CNNs) with and without skip connections and long short-term memory
networks (LSTMs). Our final model, a 10-hidden-layer convolutional neural net-
work, achieved a top-K categorical accuracy of 0.89, an overall accuracy of 0.70,
and a precision of 0.69, far outperforming our baseline model.

1 Introduction

Community question-and-answer sites are a fixture of numerous modern-day industries, including the
computer science field. For easier browsing, such sites often request users to tag their posts with the
topic they encompass, allowing those with strong expertise in the field to address the questions they
are best suited to answer and those who are interested in a particular topic to quickly view the posts
that are most relevant to them. Although tagging may be straightforward for experienced users, the
task may be challenging for new users. They may inadvertently tag their posts incorrectly, selecting
tags that are incorrect or less relevant and causing more difficulties for both the responder and original
poster. Therefore, an automated alternative is desirable, even if only manifested as a set of suggested
tags for the user to consider as they tag their post.

We propose an automated topic-tagging solution for computer science—related data, considering
forum posts from Stack Overflow, a popular QAS website frequented by both professional and
amateur programmers, as our motivating example. Given the title and body of a post (passed in a
single string), our model predicts the probability that the post should be labeled with each of the top
n Stack Overflow tags. For the purposes of this project, we assigned n = 10, but our model is viable
for larger values of n as well.

CS230: Deep Learning, Autumn 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Over the last decade, there have been numerous papers on the subject of automated topic tagging.
As far as the authors are aware, the first to address the task of topic-labeling was published in 2007
by Mei et al. [1], which utilized a knowledge graph to generate candidate labels and two centrality
measures (closeness centrality and betweenness centrality) to rank the labels in order of likeliness.
More recently, a number of papers have focused on the task of automatically tagging Stack Overflow
posts using a variety of approaches. Earlier work includes papers by Robinson and Guo at Google
Cloud, using a Bag of Words approach [2], and by Adinarayanan at Amrita University, utilizing a
hybrid Multinomial Bayes and Support Vector Machine (SVM) system [3]. Other approaches have
included Random Forests (RF), [4], Naive Bayes and Ridge Classifiers [5], and fine-tuning BERT [6].
Of these, it seems that training the classifier using BERT yields the best results (approximately 87+%
accuracy), although it is worth noting that the model was not published in an academic journal, and
thus it is difficult to designate it as state-of-the-art.

For this project, we designed several lightweight models that utilize word2vec embeddings trained
on 15GB of Stack Overflow posts [7]. The embeddings were static, and as such, not fine-tunable.
Drawing on the embeddings as an input layer, we experimented with a Bag of Words approach
using logistic regression, convolutional structures (with and without skip connections, added when
the number of convolutional layers was sufficiently high), and long short-term memory networks
(LSTMs). Generally, we found that for this particular multilabel classification task, our highest-
performing CNN architectures were able to outscore our highest-performing LSTM architectures
in terms of topK categorical accuracy, overall accuracy, precision, and F1 score. However, one of
the LSTMs was able to outperform the convolutional models in the metric of AUPRC. On average,
skip connections did not significantly increase or decrease performance. Finally, for one of our
models, we tried supplementing our CNN/LSTM model for natural language with a CNN model for
programming language recognition based on GitHub’s OctoLingua model; however, we were only
able to accomplish this for posts that contained one of the eight OctoLingua languages.

3 Dataset and Features

3.1 Dataset

Dataset details: We used the Kaggle Stack Overflow dataset [8], taken from the Stack Exchange
archive and updated on a quarterly basis. The dataset is a CSV with multiple columns (Id,
Tags, OwnerUserId, CreationDate, ClosedDate, Score, Title, Body), from which we
extracted the Tags, Titles, and Post Questions columns (using the Pandas CSV Reader). The
posts were on average 592 words in length, but posts longer than 200 words were truncated to only
contain the first 200 words to avoid making the embedding matrix excessively large.

Number of Examples: We tried a number of train-test splits and found that an 80% —20% split was
optimal. As we trained on 53K examples, we had a total of approximately 42K train-set examples
and approximately 11K test-set examples.

3.2 Preprocessing and Embeddings

For the majority of our CNN, LSTM, and logistic regression models, the title and the non-code portion
of each post (concatenated into a single string) served as the models’ only input. Specifically, we
used a series of regex expressions to remove text enclosed within the <code> ... </code> tags
(denoting the embedded code segments of each post) and extraneous characters such as line breaks.
The remaining words were assigned an index using Keras’ TextVectorization feature, and we
constructed a matrix mapping from each word to its corresponding embedding using static Word2Vec
embeddings, pre-trained on Stack Overflow posts [9]. As for the labels, we only considered the top
10 tags (sorted in order of decreasing frequency) as the possible set of labels for our model to predict.
A list of the top 10 tags on our training dataset with their respective number of occurrences can be
found in A.1.

Using Keras’ MultiLabelBinarizer, each post was labeled with a 10-dimensional multi-hot vector,
with each index assigned a value of 1 or 0 depending whether the corresponding tag was present or
not. Posts that had none of the top 10 tags were assigned a vector consisting of zeroes. For one of our

models (which ensembled the result from two CNNSs, one trained on natural language and the other
on code), we based the code-classifying CNN on GitHub’s OctoLingua model and thus trained the
model on the Rosetta Code repository, a dataset featuring 8 different GitHub programming languages.
The languages of the training distribution is also included in the appendix.

To pre-process this dataset, we removed a percentage of file extensions from our training data at the
training step to encourage the model to learn from the vocabulary of the files (and not overfit on the
file extension feature, which is highly predictive). In addition, we converted the text into lowercase
and removed all special characters.

3.3 Sample input & output

Input:
Title Body
how can i handle safari system alert ...? I wanted to open my app
without safari system alert but
I found out that is impossible ...
QOutput:
c# 0.078
java 0.035
.net 0.068
php 0.025
asp.net 0.102
javascript 0.048
Cc++ 0.071
jquery 0.029
iphone 0.103
python 0.099
Most likely tag: iphone
Figure 1: Sample input & output
4 Methods

As earlier discussed, the majority of our models took only the natural language portion of each post
into consideration, with the exception of one of our models, which comprised two CNNs, one for
processing regular text and one (based on the OctoLingua model) for processing code.

4.1 Models

Overall, we experimented with eleven different models: one logistic regression baseline that used
a Bag of Words approach to average the inputs, six CNNs without skip connections (featuring 1-6
convolutional layers, respectively), one six-layer CNN with a skip connection, one two-layer LSTM,
one model consisting of two ensembled CNNs, and one five layer BERT model (which was not one
of our final models). Diagrams and full details can be found in the appendix.

4.2 Loss Function

As this is was a multi-label classification problem, we used binary cross-entropy, which averages the
log loss for each of the N labels.

1 < .
L=~ Z; yilog(y)

In addition, we did attempt to use Kullback—Leibler divergence, which minimizes the dissimilarity
between two distributions (i.e., the fitted distribution and the actual distribution):

1 ¢ Di
L= N 2]%109(%)

http://www.rosettacode.org/wiki/Rosetta_Code

Unfortunately, Kullback—Leibler divergence caused the loss function not to decrease past several
epochs; consequently, we did not include it in our final model.

4.3 Regularization

To combat the overfitting problem, we experimented with varying numbers of Dropout layers,
eventually settling on two Dropout layers with p = 0.5. Additionally, we investigated adding both
L1 and L2 regularization. As expected, both L1 regularization significantly reduced the overfitting
problem—the train and test sets were essentially of equal performance. However, in both of these
cases, the model was not able to properly converge and exhibited extremely small F1 and precision
scores; therefore, we did not include either of these approaches in our final model.

Model Batch LR BCE Loss topK (k=2) Accuracy AUPRC f1 Precision
CNN-6 (L1): TRAIN 64 1E-04 0.1444 0.6574 0.4486 0.5671 0.4016 0.6875
CNN-6 (L1): TEST 64 1E-04 0.1388 0.6627 0.4516 0.5939 0.4521 0.6989
CNN-6 (L2): TRAIN 64 1E-04 0.1361 0.7422 0.4349 0.7340 0.5820 0.5764
CNN-6 (L2): TEST 64 1E-04 0.1130 0.6570 0.4516 0.7244 0.6157 0.7530
CNN-6: TRAIN 64 1E-04 0.0316 0.9757 0.8525 0.9462 0.9047 0.9254
CNN-6: TEST 64 1E-04 0.2166 0.8943 0.6977 0.6515 0.6196 0.7088

Table 1: Overall performance (n in CNN-n/LSTM-n denotes the # of convolutional/ LSTM layers)

4.4 Optimizer

We trained using the RMSprop algorithm, which is designed to reduce the vanishing/exploding
gradient problem via normalization/exponentially weighted averages and has been applied to text
classification with reasonable success [11]. We also experimented with Adam (meant to combine
the advantages of RMSprop & momentum) but received poor results and excluded it from the final
model. RMSprop formula:

Vaw = B Vaw + (1 = B) - dw?
Vap = B+ Vaw + (1 —) - db?

Vdw
W=W-a —2
\/wa+€

db
b=b—a-b—a——
“ a\/vderG

S Experiments/Results/Discussion

The results from our ten experiments (logistic regression, seven CNNs, an LSTM, and an OctoLingua-
based model) are recorded in Table 2. In terms of overall trends, an increase in the number of
convolutional layers correlated with an increase in topK accuracy, suggesting a more complex
architecture allowed the models to better predict this metric. Interestingly, the increase in topK
accuracy did not correlate with a lower overall binary cross-entropy loss. Perhaps this means that the
models with large numbers of convolutional layers learned how to better predict the likeliest tags
but did not learn to reduce the probability of the tags that were more unlikely. It’s also interesting to
note that while the CNNs vastly outperformed the LSTMs in most statistics, such as topK accuracy,
accuracy, and precision, the best AUPRC performances came from LSTMs. Perhaps this suggests
that the LSTMSs were superior in recall and tended to err on the side of over-predicting tags.

Overall, although the LSTM-based model was predicted to exhibit better performance due to its
ability to process sequential data, it seems that the CNN network was able to more effectively capture
the low-level temporal relationships required for this task. Perhaps this was because LSTMs are more
likely to suffer from the vanishing gradient problem than CNNs (although they certainly exhibit less
of this problem than non-gated RNNs); indeed, we did observe that at multiple points during training,
the LSTM network failed to improve its binary cross-entropy loss after only several epochs. That said,
it is worth noting that we were able to perform a far greater number of experiments with convolutional

Model Batch LR BCE Loss topK (k=2) Accuracy AUPRC f1 Precision

LoG. REG. 64 1E-3 0.1444 0.6574 0.4486 0.5671 0.4016 0.6875
64 1E-4 0.1439 0.6475 0.4421 0.5696 0.4067 0.6848
32 1E-3 0.1391 0.6553 0.4452 0.5925 0.4513 0.6990
32 1E-4 0.1388 0.6627 0.4516 0.5939 0.4521 0.6989
CNN-1 64 1E-3 0.1182 0.7917 0.5035 0.7297 0.6346 0.7446
64 1E-4 0.1086 0.7570 0.4975 0.7111 0.5682 0.7480
32 1E-3 0.1315 0.8056 0.5311 0.7086 0.6188 0.7309
32 1E-4 0.1044 0.7871 0.5223 0.7274 0.5933 0.7666
CNN-2 64 1E-3 0.1792 0.7912 0.5596 0.6928 0.5873 0.7718
64 1E-4 0.1138 0.7573 0.4850 0.6961 0.5305 0.7423
32 1E-3 0.1566 0.8496 0.5319 0.6818 0.5832 0.7112
32 1E-4 0.1093 0.7663 0.5114 0.7144 0.5661 0.7500
CNN-3 64 1E-3 0.2290 0.8831 0.6176 0.6643 0.5871 0.7279
64 1E-4 0.1150 0.6603 0.4302 0.7016 0.5626 0.7236
32 1E-3 0.2100 0.8423 0.5699 0.6601 0.5582 0.7677
32 1E-4 0.1130 0.7473 0.4702 0.7099 0.5724 0.7246
CNN-4 64 1E-3 0.1517 0.8455 0.6151 0.6973 0.6345 0.6901
64 1E-4 0.1184 0.7287 0.4595 0.6986 0.5546 0.7529
32 1E-3 0.1757 0.8791 0.5850 0.6759 0.6141 0.6738
32 1E-4 0.1266 0.8008 0.5342 0.7067 0.5937 0.7313
CNN-5 64 1E-3 0.1603 0.8389 0.5508 0.6790 0.6061 0.6564
64 1E-4 0.1307 0.7344 0.4208 0.6550 0.5254 0.7126
32 1E-3 0.1774 0.8727 0.6407 0.6660 0.6224 0.6936
32 1E-4 0.1315 0.8007 0.5490 0.6903 0.5940 0.7060
CNN-6 64 1E-3 0.1565 0.8622 0.5989 0.6550 0.6088 0.6875
64 1E-4 0.2166 0.8943 0.6977 0.6515 0.6196 0.7088
32 1E-3 0.1846 0.8879 0.6733 0.6568 0.6121 0.6971
32 1E-4 0.2975 0.8801 0.6947 0.6217 0.6087 0.6759
CNN-6 + SKIP 64 1E-3 0.1726 0.8668 0.5861 0.6764 0.5820 0.5764
64 1E-4 0.2176 0.8824 0.6764 0.6513 0.6157 0.7530
32 1E-3 0.1739 0.8671 0.6669 0.6613 0.4152 0.6833
32 1E-4 0.2857 0.8662 0.6810 0.6171 0.4118 0.6766
LSTM-2 64 1E-3 0.1361 0.7422 0.4349 0.7340 0.5820 0.5764
64 1E-4 0.1130 0.6570 0.4516 0.7244 0.6157 0.7530
32 1E-3 0.1389 0.7125 0.5371 0.5371 0.4152 0.6833
32 1E-4 0.1576 0.5340 0.3394 0.4984 0.4118 0.6766

Table 2: Overall performance (n in CNN-n/LSTM-n denotes the # of convolutional/ LSTM layers)

architectures than those with LSTM architectures due to their relative speed of computation, and
perhaps if we had performed more, we would have been able to produce a better result using an LSTM
network. Another interesting trend to note is that the skip connections did not significantly change
performance, providing neither a positive nor negative to most statistics. It seems that including a
single skip connection was not sufficient to significantly impact the overfitting problem; perhaps
more would have made a greater difference. Interesting, the two LSTMs with batch size 64 and
the logistic regression baseline did succeed in the aspect of reducing overfitting, evidenced by the
fact that their train and test scores were the closest (for brevity, the training set performance has
been omitted from the above table). However, this ostensible bonus was undercut by the fact that
neither achieved particularly good results with most statistics, with the exception of the two LSTMs
with batch size 64 that were able to achieve the highest AUPRC scores. Finally, error anlysis was
performed on a number of models; the confusion matrices are included in the appendix.

6 Conclusion/Future Work

Among all our models, the six—convolutional layer network achieved the best results, with a top-K
categorical accuracy of 0.89, an overall accuracy of 0.70, and a precision of 0.69, far outperforming
our baseline model.

Currently, our model predicts only predicts the top 10 tags and thus typically predicts tags on
programming languages, APIs, operating systems, etc. However, to detect more specific tags (e.g.,
particular algorithms), we would like to integrate Code2Vec embeddings [12], a set of embeddings
trained on 100M Java functions that returns a function’s name given its function. Integrating these
embeddings would likely augment the model’s ability to predict tags outside of the top 50. If we had
more time, we would have liked to experiment with a greater number of model architectures. An
attention model would have likely increased our LSTM model’s performance, and ResNets would
have likely helped us reap the benefits of residual connections better than our single skip connections
did.

7 Contributions

All three authors created the video and helped writing the report.

Ryan Chi: performed dataset preprocessing and cleaning, drafted the original model, tuned
the hyperparameters, created the baseline, CNN, and LSTM models, created the LaTeX data tables,
formatted the data visualizations.

Varuni Gupta: worked on implementing the LSTM model, Octolingua-based model, En-
sembling model, coming up with the Top-K categorical metric, analyzing the predictions and
accuracies of the models.

Ankur Agrawal: worked on implementing the BERT model, worked on setting up the AWS
instance and programming environment on AWS, worked on fine tuning the CNN model’s memory
requirements to make it run on the entire stack overflow dataset.

7.1 Acknowledgements:

We are grateful to Jonathan Li for providing valuable insights on model architecture and deep learning
strategy in general and to Shahab Mousavi for his feedback on our proposal. In addition, we would
like to thank Ethan Chi and Shrey Gupta for their thoughtful advice throughout the course of our
project. Finally, we would like to recognize Amazon AWS for sponsoring our project and Google
Colaboratory for their free cloud services.

8 Code

Our model can be found at https://github.com/ryanachi/topic-tagging

References

[1] Mei, Qiaozhu, et al. “Automatic Labeling of Multinomial Topic Models.” ACM, 12 Aug. 2007,
sifaka.cs.uiuc.edu/czhai/pub/kdd07-label.pdf.

[2] Robinson, Sara, and Yufeng Guo. “Predicting Stack Overflow Tags with Google’s Cloud Al Stack Overflow
Blog, 22 July 2019, stackoverflow.blog/2019/05/06/predicting-stack-overflow-tags-with-googles-cloud-ai/.

[3] Adinarayanan, Smrithi Rekha. “A Hybrid Auto-Tagging System for StackOverflow Forum Questions.”
International Conference on Interdisciplinary Advances in Applied Computing, 10 Oct. 2014.

[4] V. Jain and J. Lodhavia, "Automatic Question Tagging using k-Nearest Neighbors and Random Forest." 2020
International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2020, pp. 1-4, doi:
10.1109/ISCV49265.2020.92043009.

[5] Li, Susan. "Auto Tagging Stack Overflow Questions." Auto Tagging Stack Overflow Questions, 13 Mar.
2018.

[6] Kumar Anmol. "Stack Overflow EDA + BERT model Accuracy: 87.6".
https://www.kaggle.com/anmolkumar/stack-overflow-eda-bert-model-accuracy-87-6.

[7] Efstathiou, V., Chatzilenas, C., Spinellis, D. 2018. "Word Embeddings for the Software Engineering Domain".
In Proceedings of the 15th International Conference on Mining Software Repositories. ACM.

[8] Kaggle. "StackSample: 10% of Stack Overflow QA". https://www.kaggle.com/stackoverflow/stacksample.

[9] Ganesan Kavita. "C or Java? TypeScript or JavaScript? Machine learning based classification of program-
ming languages". https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-
classification-of-programming-languages/

[10] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. "code2vec: Learning Distributed
Representations of Code." In Proc. ACM Program. Lang. 3, POPL, Article 40 (January 2019), 29 page

[11] Libraries: Gensim, Keras, Matplotlib, Numpy, Pandas, Seaborn, Scikit-learn, Sklearn, Tensorflow, Tqdm,
Transformers

https://github.com/ryanachi/topic-tagging

A

A.l Dataset

Table 3: Top 10 tags in the Stack Overflow dataset

A2

Appendix

Details

Tag Occurrences 1o
C# 6722 1200
JAVA 3858 1000
.NET 3598

PHP 3223 €00
ASP.NET 3041 w00
JAVASCRIPT 2852

C++ 2509 400
JQUERY 2198 200
IPHONE 2111

PYTHON 2070 0

is

input: | [(2,)]

embedding_2_input: InputLayer
output: | [(?, 9]
[imput | @2 |

[ouput: | 2,2, 200 |

input: | (2, 2, 200)
lambda_1: Lambda
output: | (2, 200)
input: | (?, 200
dense_2: Dense P ()
output: | (2, 10)

Figure 3: Baseline model

embedding_input: InputLayer

input:

[, 2]

output: | [(?, ?)]

)

input:

(??)

embedding: Embedding

output:

(2, 2, 200)

)

spatial_dropoutld: SpatialDropout1D

input: | (?, ?, 200)

output: | (?, ?, 200)

)

input:
Istm: LSTM

(2, 2, 200)

output:

(?2)

input:

?.2)

dense_4: Dense

output:

(,10)

Figure 4: LSTM-2 model

Model Architecture

input: | [(2,?)]
input_4: InputLayer
output: | (2, 2)]
| input: | @72

‘ ing: Embedding | output: | (2, 2,200) |

input:

(2, 2, 200)

conv1d_18: ConviD
(2,2 128)

output:

}

’ max_pooling1d_6: MaxPooling1D

!

output:

input: | (2, 2, 128)
conv1d_19: ConviD
output: | (2, 2, 128)
input: | (2,2, 128)

’ max_pooling1d_7: MaxPooling1D

input: | (2 2, 128)
conv1d_20: ConviD
output: | (2, 2, 128)
input: | (2, 2, 128)

’ convld_21: ConviD

(2,2, 128)

(2,2, 128)
@,2, 128)

convld_22: ConvlD

swift

input: | (2, 7, 128)
conv1d_23: ConviD
ouput: | (2, 2, 128)
i i [input:] (2,2, 128)]
global_max_pooling1d_3: G ooling1D

[oucpm:] (2, 128)]

Layer (type)

Output Shape

Param #

input_word_ids (InputLayer) [(None,

128)] 0

tf_bert_model (TFBertModel)

((None, 128, 1024), (None 335141888

tf op layer strided slice (T [(None, 1024)] 0
dropout_75 (Dropout) (None, 1024) 0
dense_2 (Dense) (None, 15) 15375
activation_ 5 (Activation) (None, 15) 0

t—|

input: | (2, 128)
dense_11: Dense
output: | (?, 128)
input: | (2, 128)
dropout_10: Dropout
output: | (?, 128)
input: | (2, 128)
dropout_11: Dropout
output: | (2, 128)
| (2, 128)
dense_12: Dense |22t | (- 128)
output: | (2, 10)
input: | (2, 10)

activation_3: Activation

output: | (2, 10)

Total params: 335,157,263
Trainable params: 335,157,263
Non-trainable params: 0

Figure 5: BERT model (not included as one
of our final models due to not having enough

GPU memory to train the model at a

reasonable pace / large enough batch size)

Figure 6: CNN-6 model
(6 convolutional layers)

7

java

m Py sh go xml

Figure 2: OctoLingua training dataset details

input:
ot putLaer |22]
g

input: | (2, 283)
output: | (2, 283, 100)

]

input: | (2, 283, 100)
output: | (2, 276, 16)

l

embedding_1: Embedding

convld_6: ConviD

input: | (2,276, 16)

ling1d_2: MaxPooling1D
max_poolingld_2: MaxPooling RN

output:

[e e |

inp

dense_3: Dense

Figure 7: OctoLingua-based

0.0014

0.0012

0.0010

0.0008

vensity

0.0006

0.0004

0.0002

0.0000

model

1500 2000 2500

Length

500 1000

Figure 8: word count of Stack
Overflow dataset posts

input: | [, 2]
input_2: InputLayer
output: | [, 2]
BEEEE |
[outpue: [2,2, 200) |

body: InputLayer

@2

| e |

| ouput: | 2,2, 200) |

f—

& Comyip | 222 [©2,200)
mput | @, 2, 200 conv1d: Conv
conv1d_6: ConviD p) tput: | (2,2 128)
output: | (2,2, 128) l
,?,128)
max_pooling1d: MaxPooling1D
input: 128) | input: | (2, 2, 200) | (2,2, 128)
max_poolingld_2: MaxPooling1D la.mbda Lambda
output: (9 2, 128) [ouput: \ (v 200) |
t | (2,2 128
l convd_1: ConviD [—or (7 > 1291
nput: | (2, 2, 128) input: | (2, 200) output: | (2% 128)
conv1d_7: ConviD o) dense_2: Dense AT
output: | (2,2, output: | (2,
input: | (2, 2, 128)
max_pooling1d_1: MaxPooling1D
output: | (2,2, 128)
[input [2,2, 128) |
max_poolingld_3: [ouput: [2, 128) |
14 2 Comtp |0 [@2128)
conv1d_2: ConviD (-0 U
Pt §)
input: | (2,2, 128)
conv1d_8: ConviD oo G2 120
output: | (2, 2
il input: | (2,2, 128
convid 3: ConviD |PuE | €)
output: | (2,2, 128)
input: | (2,2, 128)
conv1d_9: ConviD
output: | (?, 2, 128) input: [(2,2, 128) [mpue [2,289]
convld_4: ConvlD 1: Embedding
output: | (2, 2, 128) | output: | (2, 283, 100) \
input: | (2, 2, 128)
conv1d_10: ConviD
- " inpuc: | (2, % 128 input: | (2, 283, 100
output: | (2, 2, 128) conv1d_5: ConviD fp[E‘ . 1291 conv1d_6: ConviD f . ((v e 15))
l output: | (2,2, output: | (2,276,
input: | (2,2, 128,
convld_11: ConviD P (7 > 128) lobal ingld: G . [Linpuc: [2,2, 128) | lingld 2: MaxPooling 1D |"PE_| @ 276, 16)
: lobal_max_pooling1d: max_pooling1d_2: MaxPooling
output: | (% 128) global_max_pooling [oupuc | . 128) | —poolingld.. B I uput | 2, 138, 16)

l—

| input: \ (2,7, 128) |

lobal_max_pooling1d_1: G
globalmax_poolingld_. [oupue: [2, 128) |

dense_3: Dense

input:
output:

\

dropout_3: Dropout

dense_4: Dense

(2, 128)

dropout_2: Dropout
pout.s: Drop (2, 128)

input:
output:

©, 128)
@, 128)

input: | [(?, 10), (2, 10,
add: Add P! [, 10), (%, 10)]
output: (2,10)
—
activation_1: Activation input: | @, 10)
output: | (2, 10)

Figure 9: CNN-6 model
with a single skip connection

A3 Experiments

[138,16) |
flatten: Flatten -

output:

input: | (2, 128) input: [(2, 32)
dropout_1: Dropout dropout_2: Dropout
output: | (2, 128) ouput: | (2, 32)
input: [(2,128 t [(232
dense_1: Dense input: | (% 126) re_lu: ReLU input: | (% 32)
output: | (2, 10) output: | (2, 32)
input: | (2, 10) input: | (2, 32)
pred_modell: Activation dense_4: Dense
output: | (2, 10) output: | (2,8)
‘ Concatenate

nput: | [, 10), 2, 8) |
[e |

Figure 10: CNN model with
OctoLingua model

0.00008+00

Figure 11: LSTM model training performance

8

Accuracy (Javascript) Accuracy (Java)

50.00 100

40.00
75

30.00
50

20.00

10.00 2

0.00 °

02 04 06 08 0.0 02 04 06 08
Weightage to Octolingua Model Weightage to Octolingua Model
Figure 12: CNN + OctoLingua model performance Figure 13: CNN + OctoLingua model performance on
on Javascript-tagged posts Java-tagged posts

Accuracy (Python)
100

75

50

25

0.0 0.2 0.4 0.6 0.8

Weightage to Octolingua Model

Figure 14: CNN + OctoLingua model performance on
Python-tagged posts

A4 Error Analysis: Confusion Matrices

In figures 15-24, the CNN-6 model's performance on each of the top 10 tags. It seems that generally, the CNN model
tended err on the side of underpredicting (rather than overpredicting) tags, as evidenced by the model's high rate of
false negatives and slightly lower rate of true positives. In terms of specific tags, it seems that the model did
surprisingly poorly on the C# tags—perhaps this is because during the pre-processing step, the punctuation removal

caused the words "C#" and "C++" to become identical. To avoid this issue, we would consider using a more
conservative tokenizer.

java

negative 01096 negative 01900

Tue label
=1
=1
8
Tue label

02866 e 01128

positive positive

2000

1000

& &
& &
&

5
& ¢
Predicted label
accuracy=0.5289; misclass=0.4711

&
& S
S &

&
Predicted label
accuracy=0.8158; misclass=0.1842

Tue label

Tue label

Tue label

Tue label

negative 0.0000
positive . 0.0000
o o
& o
& &
Predicted label
accuracy=0.9637; misclass=0.0363
asp.net
negative 0.0092
positive 00417
&
&
& ¢
Predicted label
accuracy=0.9549; misclass=0.0451
negative 01509
positive 0.2822 7178
2
<
&
Predicted label
accuracy=0.8431; misclass=0.1569
iphone
negative 0.0008
positive 981 00019

Predicted label
accuracy=0.9596; misclass=0.0404

10000
8000
6000
4000

2000

12000
10000
8000
6000
4000
2000

10

Tue label

Tue label

Tue label

Tue label

negative

positive

negative

positive

negative

positive

negative

positive

10000
01693 8000
6000
4000
0.2210
2000
¢ @
& &
&

Predicted label
accuracy=0.8275; misclass=0.1725

javascript

10000

0.0894
8000

6000

4000
02320
2000
©
&
&

Predicted label
accuracy=0.9041; misclass=0.0959

jquery
0.0000 10000
8000
6000
4000
10000 0.0000
2000
T T 0
&
&Q

Predicted label
accuracy=0.9774; misclass=0.0226

h
H
|
h

python
12000
10000
0.0189
8000
6000
4000
02373
2000
& &
& &

Predicted label
accuracy=0.9535; misclass=0.0465

	Introduction
	Related work
	Dataset and Features
	Dataset
	Preprocessing and Embeddings
	Sample input & output

	Methods
	Models
	Loss Function
	Regularization
	Optimizer

	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Acknowledgements:

	Code
	Appendix
	Dataset Details
	Model Architecture
	Dataset visualizations
	Experiments
	

