Deep Surrogate Models for Atomic Systems

Sathya Chitturi Xiaotong Gui
Department of Materials Science & Engineering Department of Statistics
Stanford University Stanford University

1 Introduction

In this report, we consider the problem of black-box optimization of complex physical systems. We are
interested in the scenario where we have a known specification of the system X with a corresponding
associated value y. Given the data the task is to generate a new X which yields a desirable value for
1y, defined according to some prior design specification. There has been much recent progress in the
inverse materials design space and notable successes include the development of better nanophotonic
devices [9] and metasurfaces [12] as well as more promising new pharmaceutical drugs [14]]. In this
paper, we take a surrogate optimization approach to find optimal input configurations. Specifically,
we aim to train deep neural networks to directly learn the X, y mapping. The advantages of such an
approach is that the resulting neural network is very cheap to evaluate and, in general, the mapping
is differentiable. If this neural network can be successfully trained to closely approximate the
underlying function, then it should be possible to optimize this new function directly via gradient-
based optimization schemes.

We analyze a two-dimensional physical system which consists of a number of atoms which can
interact in an attractive or repulsive manner depending on the atomic pairwise distances (Lennard-
Jones Potential). Here, we aim to find the configuration of atoms which minimizes the total potential
energy. We choose this problem because the functional mapping is known analytically and is fast to
evaluate. Our hope is that the analysis presented here can be of use to other materials systems where
the function form is unknown and the true forward model is difficult to evaluate.

2 Related work

This work shares many similarities to the well established field of machine learning potential force
fields. In this field, there have been a number of successful attempts to learn the potential energy
of complex systems [4} 8 [11} [13]; in general, these systems are much more complicated than the
Lennard-Jones model treated in this report. The difference between our work and these projects is the
information provided to these models during training. For machine learning force fields, the energy
for every atom in a configuration is provided to the algorithm. For instance, an atomic cluster with
Nparticles = 32 will have 32 potential energies as the corresponding label. Here, we focus on the
situation where only the total energy is known; this is likely a harder problem since the machine
learning models have less information to learn from. In our work, we also focus on developing a
graph convolutional neural network to predict energies. Our graph implementation is similar to the
implementation in [2]] which predicts the mobility of particles in a supercooled liquid simulation
and the implementation; the primary difference in our work is that we predict energies rather than
mobilities.

3 Dataset Description

We simulate a dataset of Lennard-Jones Potential which contains the positions of N atoms in 2-
dimensions. Specifically, each training example X, is represented by a 2 x N matrix corresponding
to (x,y) coordinates for each atom. The regression target is the total potential energy (V) of the system
(Equation E]); in this equation, r;; is the distance between particle ¢ and particle j and o and € are

CS230: Deep Learning, Fall 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

physical constants that are set to 1 for our analysis. An example, a scatter plot visualization of a
training data example is provided in Figure|[T](a).

Tij

@) 0

0 e

(a) Example training data; here N =32 and V' = (b) 2D discretization of atomic
20.01. positions.

Figure 1: Visualization of a single training example for the Lennard-Jones optimization problem.

We simulate train, validation and test set of sizes 50,000, 10,000 and 10,000 respectively (Full Energy
Dataset). Where required, we also augmented this dataset by adding 19 permutations of each example
to the training set (Section[d.1.T)). We also created a second set of training, validation and test sets
corresponding to only structures for which V' < 0 (Low Energy Dataset).

4 Methods and Model Overview
4.1 Analysis of Different Forward Models on the Full Energy Dataset

In this section we elucidate the different architectures and features considered for training a surrogate
neural network model to approximate the Lennard-Jones potential. We develop our models in Keras
[S] and Tensorflow [1]; we use StellarGraph for the GCN implementation [7]]. Here it is worth noting
that the energy prediction range for this problem is very large (-7 to 105°). For this reason, we instead
opted to transform V' to log(V + 32). Here, the +32 factor ensures that only positive numbers are in
the logarithm argument. For all analyses in this section, we used a mean-squared error (MSE) loss
function between the prediction and log(V" + 32) for training; our evaluation metric was chosen to be
the mean-absolute percentage error (MAPE).

4.1.1 Multilayer Perceptron with Permutations

Our first model was a Multilayer Perceptron Regressor (MLP) that is trained directly on the (z,y)
coordinates of the simulated data in the Full Energy Dataset (Section [3). Here we note that shuffling
the NV (x,y) coordinates in the input data gives the same atomic configuration. Thus, we augment our
training set by adding 19 extra permutations of each training data example. We tried a number of
different fully-connected architectures, varying from 1000-1000000 parameters. In this work, we
report the results using a fully-connected architecture with [512, 256, 128, 64, 32, 32, 32, 16, 1]
nodes for each hidden layer, ReLL.U activation functions. This model was trained with a batch size of
512, learning rate of 0.001 for 500 epochs.

4.1.2 Discretization and 2D CNN

Due to the fact that the MLP is not permutation invariant, we next attempted to converting the
coordinate matrix information into a 2D image via discretization. We discretized coordinate space
into 32 x 32 small boxes and labelled each box as 1 if it contains a particle. The fineness of
discretization was chosen as the smallest box size such that there is no more than 1 particle in each
box. Then for each training example, the input data was transformed into a 32 x 32 binary matrix,

which preserves the permutation invariant property (Figure[T]b). We used a number of different
Convolutional Neural Network Regression (CNN) models on this image date. In this work, we report
the results using the CNN in Figure[2]on the Full Energy Dataset (Section [3). This model was trained

for 200 epochs, with batch size of 64 and a learning rate of 0.0001.

1 1

CEXTE
°EXTE

InputLayer Conv2D MaxPooling2D Flatten

16

16

16

Dense Dropout

8X8
1444

256 32

Figure 2: CNN Model Architecture. This illustration was created using Net2Vis [3].

4.1.3 Graph Convolutional Neural Network

32

Conceptually, graph neural networks is the best candidate for our problem. This is because the
functional form of the LJ potential depends only on pairwise-interactions and is dominated by local
environments (only nearby particles interact with each other). Furthermore, graph neural networks
should be invariant to permutations, translations and rotations of the input data [2]].

We converted each training example into an undirected graph where the nodes represent particles
and the edges are weighted to represent the distance between particles; two nodes are connected if
they are sufficiently close in distance. We chose the distance threshold based on the success of [2] in
learning structural information. In addition, we weight the edges using the actual distances.

We created two node features to feed into the encoder:
1. radial density: for each node, we calculate the number of surrounding particles within a certain
radius using a range of radius from (0.1,32) with a step of 0.5. This metric is a simplified version of
kernels proposed in other papers which aim to learn complex atomic environments [[13].
2. sorted pairwise distance: we pass in the sorted distance of the current particle to every other
particle in the system. This feature tells us how far away each node is from everything else.

We then trained a neural network that predicts system energy based on a graph using an architecture
similar to the Deep Graph Convolutional Neural Network (DGCN) [16]. The convolutional layers
output an embedding for each node which are then passed through a series of fully connected layers
to create the final prediction (Figure[3).

Graph
Input

Graph

convolutions Dropout

y a7
y y
f /
/ A
Y y

Figure 3: GCN Model Architecture

Sorted
Pooling

Graph embeddings

N

Predicted
Total
Energy

For this analysis, we used a GCN with nz,qyers GCN layers each with ny,4es nodes. This is followed
by a series of fully connected layers with [128, 64, 32, 20, 1] hidden nodes. All the activation

functions were ReLLU except for the last linear layer.

10

LE

10

4.2 Hyperparameter optimization for GCN models on Low Energy Dataset

We optimized GCN models on the Low Energy Dataset (Section [3) in order to perform well on low
energy structures (V' < 0). Hyperparameter optimization was performed for the GCN models with
respect to the learning rate (a)), number of nodes in the GCN layers (1 no4es) and number of GCN
layers (nr,qyers). For this dataset, we chose mean absolute error (MAE) for the evaluation metric
since the MAPE is very unstable for inputs near 0. Furthermore, since the dataset was restricted
to V' < 0, we trained our models directly on V instead of log(V + 32). For simplicity, we kept
the number of nodes in each GCN layer constant for each model. We performed an exhaustive
search of the following hyperparameters: o € [0.001, 0.0001, 0.00001, 0.000001], nrqyers € [1,
2, 3] and nnodes € [32, 128]. Models were trained for 100 epochs with a batch size of 256 and an
early-stopping patience of 10.

5 Results and Discussion

5.1 Comparison between MLP, CNN and GCN models

We report the training and test performance for an MLP with permutation, 2D CNN on discretized data
and the GCN (Table[I). Please refer to Section .1]for a description of the respective architectures.

Model MAPE (training) MAPE (validation)
MLP (with permutations) 4.8 78

2D CNN (with discretization) 29 81

GCN 6.3 6.6

Table 1: MAPE of different models on training and validation set

We achieve very poor performance for the permuted MLP and CNN models (Figure d)). The reason
for this poor performance is likely because the MLP and CNN are not invariant to rotations of the
data features; furthermore, the permuted MLP, is additionally not invariant to translation operations.
In addition, it is likely that the sparsity of the CNN representation (i.e. a binary matrix) makes it very
difficult to learn meaningful representations. This phenomena has been observed previously in other
works [10} 16]. In order to improve our performance using this method, one possible future approach
may involve training sparse CNN models in which convolutions are only performed on non-sparse
areas of the input [6].

On the other hand, we achieve good results for the GCN implementation (Figure[d). On the validation
set, the GCN model achieved good overall performance on systems with total energies ranging from
—32 to 10%°, We ascribe this improved performance to the fact that GCNs automatically enforce
translation, rotational and permutation invariance. From this section it is clear that the architecture
choice and featurization is critical to achieve good performance.

GCN model loss GCN Prediction for Full Energy Dataset
40
— frain 40
35 validation
30 30
s N
+
0
% 20 %
=2 k=
u
15 1 2w
10 |
5 ™ 0
Ll d A '} L oot L
o T T T T T T T T T T T
0 100 200 300 400 500 0 10 0 0 a0
epoch Predicted log{V + 32)
(a) MSE Loss for Training and Validation (b) Predicted and true log(V + 32)

Figure 4: GCN Training Performance

5.2 Error Analysis for GCN trained on Full Energy Dataset

Ultimately, the goal of this work is to find atomic configurations with low energy. We analyzed the
performance of our model in Section[5.1|for these low energy structures (Figure[3)); here, we convert
the potential energies from a log scale back to a linear scale. From this transformation, it is clear
that our model performs very badly in this regime. This is relatively unsurprising as the model was
trained to be sensitive to logarithmic and not linear changes in energy. For this reason, we decided to
additionally train and optimize models to perform well on low energy structures using the Low
Energy Dataset.

100 GCN Prediction for Low Energy Structures

75

True
|
=1
[£] =
L]

L]

.;:
[] ° []
. L]

100 -75 =50 25 0.0 25 5.0 75 10.0
Predicted V

Figure 5: GCN prediction for low energy data.

5.3 Hyperparameter Optimization for GCN trained on Low Energy Dataset

We performed hyperparameter optimization over the learning rate, number of GCN layers and hidden
nodes (Section[4.2) in order to find a good model to predict the energy of low energy structures. The
top five models for our analysis are shown in Table[2] Here we report the validation MAEs for all
models and the corresponding test MAE for the best model.

Model Learning Rate Nyodes MNrayers MAE (validation) MAE (test)

1 0.001 128 2 0.248 0.244
2 0.001 128 3 0.255 -
3 0.001 32 3 0.305 -
4 0.001 32 1 0.333 -
5 0.0001 128 3 0.343 -

Table 2: Performance of top five GCN models on validation and test set.

In general, our intuition for varying the number of GCN layers was to change the message passing
depth of the graph and thus, in this case, to allow for more non-local effects. However, we do not
definitively observe better performance for a larger number of layers. We believe that this is because
the Lennard-Jones potential is primarily local in nature (energies of interaction are dominated by
nearest neighbours) and therefore additional non-local knowledge is relatively inconsequential. In
addition, it is worth mentioning that the top five models all perform well and are separated by less
than 0.1 MAE. This indicates that GCN model optimization, for this problem, is not as important as
selecting an appropriate architecture which correctly reflects the underlying physics (Section [5.1)).

6 Conclusion and Future Work

In this work, we trained models to approximate the Lennard-Jones potential. We found that for this
problem, the choice of neural network architecture is critical to achieving good performance and
that GCNs are useful models for this purpose. We also found that it is difficult to maintain good
predictions on both very high and very low energy structures simultaneously. In future work we would
like to investigate the effect of using a custom loss function to prioritize prediction on low energy
structures. In addition, the main area for further development is to apply black-box optimization
techniques to our GCN models in order to find low energy structures.

7 Contributions

Both authors contributed equally to this work. Alex Gui focused on hyperparameter optimization and
error analysis and Sathya Chitturi focused on developing different forward model architectures. All
portions of the analysis were reviewed by both authors. We thank Sharon Zhou, Peihao Sun, Daniel
Ratner and Yanwen Sun for their helpful suggestions and guidance.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeftrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

Victor Bapst, Thomas Keck, A Grabska-Barwiriska, Craig Donner, Ekin Dogus Cubuk, Samuel S Schoen-
holz, Annette Obika, Alexander WR Nelson, Trevor Back, Demis Hassabis, et al. Unveiling the predictive
power of static structure in glassy systems. Nature Physics, 16(4):448—-454, 2020.

Alex Biuerle and Timo Ropinski. Net2vis: Transforming deep convolutional networks into publication-
ready visualizations. arXiv preprint arXiv:1902.04394, 2019.

Venkatesh Botu, Rohit Batra, James Chapman, and Rampi Ramprasad. Machine learning force fields:
construction, validation, and outlook. The Journal of Physical Chemistry C, 121(1):511-522, 2017.

Francois Chollet et al. Keras, 2015.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3075-3084, 2019.

CSIRO’s Data61l. Stellargraph machine learning library. https://github.com/stellargraph/
stellargraph, 2018.

Tran Doan Huan, Rohit Batra, James Chapman, Sridevi Krishnan, Lihua Chen, and Rampi Ramprasad. A
universal strategy for the creation of machine learning-based atomistic force fields. NPJ Computational
Materials, 3(1):1-8, 2017.

Tyler W Hughes, Momchil Minkov, Ian AD Williamson, and Shanhui Fan. Adjoint method and inverse
design for nonlinear nanophotonic devices. ACS Photonics, 5(12):4781-4787, 2018.

Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier Perrotton, and Fawzi Nashashibi. Sparse and
dense data with cnns: Depth completion and semantic segmentation. In 2018 International Conference on
3D Vision (3DV), pages 52-60. IEEE, 2018.

Ying Li, Hui Li, Frank C Pickard IV, Badri Narayanan, Fatih G Sen, Maria KY Chan, Subramanian KRS
Sankaranarayanan, Bernard R Brooks, and Benoit Roux. Machine learning force field parameters from ab
initio data. Journal of chemical theory and computation, 13(9):4492-4503, 2017.

Zhaocheng Liu, Dayu Zhu, Sean P Rodrigues, Kyu-Tae Lee, and Wenshan Cai. Generative model for the
inverse design of metasurfaces. Nano letters, 18(10):6570-6576, 2018.

Rampi Ramprasad, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-Kanakkithodi, and Chiho Kim.
Machine learning in materials informatics: recent applications and prospects. npj Computational Materials,
3(1):1-13, 2017.

Benjamin Sanchez-Lengeling and Aldn Aspuru-Guzik. Inverse molecular design using machine learning:
Generative models for matter engineering. Science, 361(6400):360-365, 2018.

Michael J Willatt, Félix Musil, and Michele Ceriotti. Atom-density representations for machine learning.
The Journal of chemical physics, 150(15):154110, 2019.

Muhan Zhang, Zhicheng Cui, M. Neumann, and Yixin Chen. An end-to-end deep learning architecture for
graph classification. In AAAIL 2018.

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

	Introduction
	Related work
	Dataset Description
	Methods and Model Overview
	Analysis of Different Forward Models on the Full Energy Dataset
	Multilayer Perceptron with Permutations
	Discretization and 2D CNN
	Graph Convolutional Neural Network

	Hyperparameter optimization for GCN models on Low Energy Dataset

	Results and Discussion
	Comparison between MLP, CNN and GCN models
	Error Analysis for GCN trained on Full Energy Dataset
	Hyperparameter Optimization for GCN trained on Low Energy Dataset

	Conclusion and Future Work
	Contributions

