Predicting Depression Symptoms Using —omics Data
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1 Introduction

Depression, ranging from minor to major in severity, affects millions of individuals in the United
States. It is the most common mental disorder in the US, with roughly 17% of the population
experiencing at least one major depressive episode during their lives [[10]. The prevalence of the
disorder has steadily increased over the past decade [14] and has dramatically spiked during COVID-
19 [6].

Despite depression’s prevalence and correlation with elevated risks for diabetes, cancer, cardiovascular
disease, hypertension, strokes, general functional impairment, and suicide, the biological basis and
metabolic markers behind it are not well understood [[10]. Current diagnoses rely on subjective
psychiatric evaluation and criteria outlined in the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) [13]]. The DSM is published by the American Psychiatric Association and is used
by experts to diagnose individuals for mental disorders [13].

However, the highly subjective and often vague directions provided by the DSM can cause wildly
divergent clinical evaluations of the same patient [13]]. More recent concerns include a high rate of
incorrect diagnoses (i.e. false positives) [13]], as well as criticism that pharmaceutical companies with
conflicting financial interests have undue influence in shaping the DSM’s diagnostic guidelines [J5].

We hope to remedy some of these issues by presenting an alternative model to the DSM that
is more strongly grounded in objectively measurable patient-level data. Thus, this project aims
to develop a deep learning model that can predict whether a patient is experiencing some level
of clinical depression, based solely on the metabolomics, lipidomics, cytokine, and/or clinical
profile of that individual. To accomplish this, we first conducted exploratory data analysis on
our high-dimensional dataset, imputed missing values into the dataset, and stratified patients into
training/development/testing datasets. Next, we established several baselines to compare our deep
learning model against by training several traditional machine learning models. Finally, we developed
a deep learning model in Keras to predict the depression state of a patient based on his/her biomarkers.

2 Dataset

We are utilizing a dataset drawn from a currently unpublished study conducted in Michael Snyder’s
lab by Nikki Solanki in 2019 which sought to evaluate the effectiveness of Inquiry-Based Stress
Reduction (IBSR) on alleviating the symptoms of depression. IBSR is a non-pharmacological 9-day
retreat program that treats depression through cognitive belief restructuring.

A total of 63 patients (28 depressed and 35 healthy individuals) were initially enrolled in the study,
but only 47 of these patients were selected for the deep profiling conducted by the study’s authors.
This deep-profiling involved the collection of psychological, physiological, and -omics data from
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each individual at five primary time points: before the retreat, during the retreat (during which data
was collected daily for psychological surveys and thrice for -omics data), one month after the retreat,
three months after the retreat, and six months after the retreat. These deeply profiled individuals
formed the basis of our dataset.

At each of these time points, each patient also took the Beck Depression Inventory-1I (BDI-II) survey.
The BDI-II survey lists symptoms of depression and asks respondents to rank the severity of each
symptom on an integer scale from zero to three [[L1]. The overall score is the sum of the respondent’s
scores for each symptom, and this overall score corresponds to the DSM criteria for depressive
disorders [[7].

Not every individual was profiled at every time point, however, and some tests had to be discarded
after quality control measures were taken. Thus, there were actually only a total of N = 201 total
distinct metabolite measurements taken from patients at distinct time points.

We split the patients into a training, development, and test set such that there were 5 patients’
measurements in each of the development and test sets, and the remainder of the patients were left in
the training set. We separated the data by patient, rather than simply shuffling the entire dataset, in
order to prevent the model from "cheating" during training by observing a data point belonging to
a patient who was also included in the test set. This division more accurately reflects the way the
model would be used in the real world, where we receive a measurement from a patient we’ve never
seen before and need to predict whether they are depressed.

3 Approach

3.1 Classification or Regression?

At first, we tried to frame this project as a regression problem, and trained our model to predict the
exact BDI-II score that a patient would have based on their biomarkers. However, the sparsity and
noise of our very small dataset made it difficult to successfully train such a model.

Additionally, given the desired use case of our model — predicting whether a given patient is depressed
or not based on their -omics data — this prediction did not offer much diagnostic benefit nor shed
much additional insight on a patient’s status given how noisy these scores typically are.

Thus, we decided to re-frame our problem as one of binary classification by binning the BDI-II scores
based on expert domain knowledge. The dependent variable Y in our model was a binary random
variable such that YY) = 1 if patient 7 is depressed, otherwise Y(?) = 0. A score of 0-9 on the
BDI-II typically indicates that a patient is not depressed, while 10-18 corresponds to mild depression,
19-29 to moderate depression, and 30+ to severe depression [3]]. Thus, we considered a patient 7
to be depressed, and thus have y ) = 1, if his/her BDI-II score was greater than 9, and Y@ =9
otherwise.

3.2 Feature Engineering: Imputing Missing Values and Dimensionality Reduction

Our dataset contained a small number of unique datapoints (N = 205 in total across all splits) and
was of high dimensionality.

Within a single sample of a patient, many biomarkers can be measured, each individual measurement
of a specific biomarker will be noisy, and many biomarkers will simply have no reported value due
to measurement error. Thus, we faced the challenge of effectively processing this data to minimize
noise, and imputing enough of the missing values to ensure that the model could discern some signal
for each of the biomarkers.

Simple statistical techniques were insufficient to separate this high dimensional data where noise was
often larger than signal. The t-SNE plot below projects the vector of metabolomics measurements for
each patient onto a 2D plot. As the fairly randomly interspersed depressed patients’ measurements
(red points) among the non-depressed patients (green points) illustrate, the raw data does not appear
to partition itself into obvious clusters, at least when viewed through this projection.



t-SNE Plot of Patients by their Metabolomics Data
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We initially used the metabolomic measurements for a particular patient at a particular timepoint as
the feature set X, rather than the other -omics data that we had access to. We focused on metabolomics
because metabolomics data has been widely praised in the literature as an emerging diagnostic tool
[15], and thus we were curious about the predictive power of metabolomics data specifically in
practice as it related to mental health. However, we also had access to a much wider range of -omics
data at our disposal. Thus, we decided to use metabolomics data as our baseline for performance,
and tried to come up with a way to take advantage of the other -omics data modalities to get a higher
performing model.

After imputing missing values (detailed later in this report), we then applied PCA to our imputed
dataset to address the high dimensionality of our features. We then tuned our deep learning model
with different subsets of the PCA features, varying the amount of total variance that was captured
by the features fed into the end model. [9]. We observed that explained variance ratio decreases
quickly as the rank of component increases, confirming that PCA is helpful in reducing the number
of features for our dataset.

In the chart below, each plot corresponds to a different data modality (e.g. "df_metab" is metabolomics
data, "df_metpan" is a separate metabolic panel, "df_lipid" is lipidomics, "df_cyto" is cytokines, and
"df_card" are cardiovascular risk factors).

df_card df_cyto df_metpan df_lipid df_metab
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3.3 Baselines

To establish baselines for model performance, we trained several non-deep-learning models, including
the following: random forests, gradient boosting, SVCs, and other classical machine learning
techniques. We ran grid search over the relevant hyperparameters for each model, and performed
5-fold cross-validation for each set of hyperparameters.

The box plot of the F1 Scores on each of the held out folds of the cross-validation procedure for the
best-fitted model as selected by grid search is shown below:
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The best F1 Score for each classification model was as follows, with AdaBoost achieving the best
F1 Score but SVC and Gradient Boosting tying for best diagnosis accuracy. Given the large bias
towards negative values in our dataset, it seemed that F1 Score is a more useful metric for evaluating
the utility of a model than accuracy:

Model Best F1 Score  Best Accuracy
Support Vector 0.26 0.89
K-Nearest Neighbors 0.27 0.75
Gradient Boosting 0.28 0.89
Random Forest 0.33 0.83
Multi-layer Perceptron (4 layers) 0.33 0.81
AdaBoost 0.37 0.67

3.4 Deep Learning Model

Several recent studies have applied straightforward feed-forward deep neural networks to evaluate
-omics data for disease diagnosis [1}[12]. Since our problem is similar, the code provided by Alakwaa,
Chaudhary, and Garmire in their breast cancer metabolomics study served as our starting point [[1]].
Following their methods, we performed a hyperparameter search for a feedforward neural network
with Keras Tuner, evaluating potential models based on binary cross-entropy. We skipped over the
quantile normalization that they conducted on their dataset since our Y values were already clearly
labeled and interpretable.

4 Results

The breast cancer metabolomics study authors optimized their hyperparameters using random search.
They used RMSProp as their learning algorithm and varied the algorithm’s learning rate, momentum,
and rho values over the random search. They limited their hyperparameter search to relatively small
neural network architectures: 4 hidden layers maximum with 10 to 100 units per layers. We ported
their code from R and performed a similar search. We tried both random search and Bayesian
optimization, as provided in Keras Tuner, to find the best hyperparameters as measured by accuracy
on the training set.

We found a relatively small neural network (a single dropout layer and three hidden layers consisting
of 40, 20, and 20 units, respectively) could achieve perfect or near-perfect accuracy on the training
set. However, accuracy declined sigificantly on the validation set: initially, the model would predict
Y = 0 for all examples in the validation set. Since our data is imbalanced, with relatively few
samples from depressed individuals, the model could achieve high accuracy simply by overfitting to
the depressed individuals in the training set.



To address the overfitting problem, we tried several approaches. We used the Synthetic Minority
Oversampling Technique (SMOTE) as implemented in the imbalanced-learn library to augment
the training data with synthetic examples of depressed individuals [4; |8]. We achieved our best
results by computing the five most significant features from each testing panel (metabolomics,
lipids, cytokines, cardiovascular risk, metabolic) using PCA. Therefore each example consisted
of 25 features. Initially, the training set contained 25 positive examples (samples from depressed
individuals) and 103 negative examples. With SMOTE, we created an additional 26 positive examples
to improve the class balance. After training on this dataset, the model achieved 86.49% accuracy and
0.44 F1 score on the development set used for tuning. Unfortunately, its performance on the held-out
test set was far worse: 69.44% accuracy and 0.0 F1 score. The model did predict Y = 1 for some
examples in the test set, but none of its predictions were correct.

We also tried to reduce overfitting through regularization. We did a second hyperparameter search for
dropout and L2 regularization values, optimizing for accuracy on the validation set. This proved less
effective than data augmentation. For example, we started with the model trained on the augmented
dataset described above. Holding the basic architecture constant, we searched for the optimal
L2 regularization value for each hidden layer and the optimal dropout rate for additional dropout
layers. (The search space included zero, so the algorithm could potentially have returned the model
unchanged.) The regularized model’s accuracy decreased to 78.38% on the development set and
61.11% on the test set.

We anticipated our dataset’s high dimensionality and relatively small size might hinder our model’s
performance. We mitigated these challenges somewhat with data augmentation and dimensionality
reduction techniques. To predict depression based on blood test data reliably, a deep neural network
will likely require training data from thousands of individuals, a significant percentage of whom are
suffering from depression.

5 Conclusion

Detecting and diagnosing mental health disorders remains a complicated task: even the best human
experts can only offer educated guesses based on largely qualitative measurements, and thus diagnoses
for the same patient and set of symptoms can vary.

In this project we attempted to leverage the vast amount of quantitative data that is being generated
by unseen biological processes in patients in order to train a more sophisticated model that could
relate patterns in this data to a more accurate diagnosis of depression. The limited size of our dataset,
likely exacerbated by its high dimensionality, however, prevented us from developing an effective
diagnostic tool.

Additional experiments in the clinic to generate larger datasets of depressed/non-depressed patients
and their metabolomics data could improve model performance and generalization. An ensemble
approach of multiple models with different biases may also prove useful. For example, Asakura,
Date, and Kikuchi developed an ensemble deep neural network (EDNN) to relate phenotypes in fish
to metabolomics data [2]], and their EDNN produced a lower RMSE than using a single deep neural
network for all species in their study.

6 Access to code

[https://github.com/Miking98/cs230-project|
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