
Comprehend Sentiments in Product Reviews
(Natural Language Processing)

Yecheng Yang
yechengy@stanford.edu

Aditya Thakkar
adityat@stanford.edu

Huaping Gu
hpgu@stanford.edu

1 Problem Description

Social distancing during the current pandemic has prompted consumers to buy products online. One
of the important factors that help consumers judge quality of a product or service without being able
to tangibly review the product is customer reviews. In addition, reviews also help product seller to get
feedback from their customers. We propose using Deep Learning to analyze sentiments of product
reviews that can help product sellers and consumers to take focused approach on the reviews that
matter to them. The input to our deep learning system will be product review comprised of product
rating and text description of the review. The input will be processed to generate embedding, which
will be passed to Neural Network model. The output will be rating in the range of 1-5 signifying
score of the review.

2 Dataset Exploration

The product reviews are typically comprised of product ratings and text description. Product review
from Amazon in following categories - Books, Movies, Electronics, Kitchen and Food, have been
made openly available at [1], and [2]. We will refer to data from [1] as JHU data and data from [2] as
Food Review data.

JHU Dataset comprises of 8,000 reviews, while Food Review dataset comprises of 568,454 reviews.
Looking at the rating distributions, JHU data is much more evenly distributed compared to Food
Review data, which has an overwhelmingly ratio for 5-star reviews as seen in [Figure 1] Refer to
Appendix.

The mean review length for JHU data set is 135 words while the mean is only 75 words for Food
Reviews (refer to Table 1 and Figure 2 in Appendix). Moreover, standard deviation for JHU Dataset
is 150 words compared to 46 words for Food Review Dataset. Similarly, their 75th percentile is 162
and 83 words respectively. This pattern continues to hold for even longer reviews. We also noticed
there are reviews with min 1 word and max of 3393 words in case of JHU Dataset, and reviews
with min 21 words and maximum 176 words in case of Food Review Dataset. As observed, the vast
majority of the reviews have length between 21 and 200 words, and a closer look into review length
revealed that food reviews are in general more concise compared to reviews for other products. For
details please check [Table 1]. The vocabulary consists of 46,815 words.

Beyond that, we have also conducted some standard pre-processing for the reviews. All reviews are
converted to lower case, all trailing spaces and punctuation are removed. In addition, the words of
every review have been tokenized i.e. converted into an integer value; the result of which is list of
tokens (integers) for every review.

Last but not least, instead of having only 0 and 1 value as labels for classification, product rating
ranging from 1-5 are used as the label value. This will ensure model is able to predict the sentiment
of the review and assign score ranging in value 1-5.

CS230: Deep Learning, Winter 2020, Stanford University, CA.



3 Proposed Methodology

Long Short Term Memory (LSTM) Neural Network will be used at the core of the algorithm. LSTM
are known to regulate flow of information using mechanism called gates [3]. This helps in learning
long-term dependencies needed for problems such as sentimental analysis. Python programming
language will be used to pre-process the data and tokenized text reviews i.e. convert text to inte-
ger. In addition, PyTorch will be used to generate embedding of the tokenized text; specifically,
torch.nn.Embedding module of the PyTorch framework will be used to generate embedding. Dimen-
sion of the embedding will be treated as an hyperparameter and selected in the range of 50-300 as this
range has been commonly used in speech recognition applications such as [4] and [5]. In addition,
the deep learning model using LSTM neural network will be developed using PyTorch framework as
well.

3.1 Model

Figure 3: Sentiment Analysis Model

Refer to Figure 3. In the Forward Propagation step, embedding will be input to the LSTM neurons
along with cell state from previous LSTM state. Output of LSTM will passed to a fully connected
layer with Softmax activation function in order to generate the output. Softmax because we would
like the output of the model to classify the outcome in the range of 1-5. Loss function used will be
categorical cross entropy function, which is commonly used with Softmax activation function. In the
Back Propagation step, Adam optimizer will be used with Beta1 value of 0.9 and Beta2 value of 0.999.
In addition, learning rate will be an hyperparameter and will be initialized to the value 0.001. Lastly,
considering the fact that there are more than 500K examples in the dataset, mini-batch algorithm
will be used to accelerate learning process. Mini-batch size will be a hyperparameter. However, size
of 512 will be used as the initial mini-batch size. 512 is chosen as the initial mini-batch size under
assumption that 1126 batches generated, each of size 512, would be computationally inexpensive
compared to smaller mini-batch size, and it would fit the 16Gb RAM available in the p2.Xlarge EC2
instance on AWS with GPU. Lastly, depending on whether there is over-fitting, dropout techniques
such as L2 regularization or Dropout will be used in order to reduce the high variance.

3.2 High Level Algorithms

There are 2 folds to the architecture; first (Algorithm1) is to load the data from files, parse the data
from original format to dictionary and pre-process the data into format that can be inputed to the
model i.e. remove punctuation, convert text to lower case, shuffle the dataset (which includes labels
as well), create vocabulary, convert vocabulary to tokens, tokenize review text, create label set, pad
and truncate the tokenized reviews, and convert the tokenized reviews and label set into numpy array.
Second step (Algorithm2) is to split the dataset into train, validate and test sets, batch it and convert
it to PyTorch tensors, create the model, train and validate the model, and finally test the model.

2



Algorithm 1: Data Processing
Data: JHU and Food Review Datasets
Result: Parsed, Padded and shuffled tokenized

dataset and label set in numpy array
format

Function loadData(path)is
Load datasets from files;
Parse;
Shuffle Dataset (which includes labels as
well);

Create Vocabulary;
Tokenize Vocabulary;
Encode (tokenize) review text;
Create Label Set;
Padding and Truncation;

Algorithm 2: Main Loop
Data: Training, Validate and Test Dataset
Result: Trained and validated model, and test

results
Split Dataset into Train, Validate and Test set;
Batch datasets and convert to PyTorch Tensors;

Create ReviewSentimentLSTM model object;
Create Optimizer and CrossEntropy Criterion;
Create CUDA device if CUDA is available;
while epochs not finish do

train model while batches do
counter + 1 forward propogate on the
batch;

calculate loss();
Adam Optimizer();
clip_grad_norm();
optimizer();
if counter mod validate_counter then

validate the model using Validate
dataset;

else
continue training

test model;

4 Hyper parameters Tuning

Following are the Hyper Parameters for the architecture.

Hyper Parameter Description Initial Value

data_split_ratio training data ratio (remaining is evenly divided into Validate and Test set) 0.92
batch_size number of examples in 1 batch 512
output_dim number of output classes 5

embedding_dim embedding dimension, empirical data from related paper 300
dropout dropout rate 0.1

n_layers how many hidden layers 1
n_direction 1 = unidirectional LSTM and 2 = bidirectional LSTM 1

learning_rate Learning rate in training 0.001
hidden_dim number of LSTM hidden units per layer. 176

Table 2: Hyper Parameters and initial value

4.1 Hyperparameter Tuning Results

Table 3 shows the test results with various Hyper Parameter (HP) Tuning. All the testcases were
executed for 2 Epochs and the results are from Test Set execution

3



Test No. Description Epoch Duration (sec) Avg Test Set Loss Test Set Accuracy
1. Initial HP in Table 2 195 0.019119 0.990892
2. Initial HP in Table 2 + n_layers = 2 340 0.021294 0.989722
3. Initial HP in Table 2 + n_layers = 3 494 0.018231 0.991196
4. Initial HP in Table 2 + n_layers = 4 650 0.016701 0.991890
5. Initial HP in Table 2 + n_layers = 5 788 0.064367 0.988767
6. Test 4. + n_direction = 2 1480 0.0187490 0.990676
7. Test 6. + batch_size = 256 1958 0.0178740 0.990545
8. Test 6. + embedding_dim = 400 1546 0.018730 0.990199
9. Test 8. + hidden_dim = 256 3321 0.018730 0.990199
10. Test 8. + hidden_dim = 75 299 0.019239 0.991196
11. Test 8. + hidden_dim = 128 699 0.016768 0.991803
12. Test 11. + learning_rate = 0.034 688 0.133538 0.991023
13. Test 11. + learning_rate = 0.064 668 0.802661 0.665293
14. Test 11. + batch_size = 256 997 0.016700 0.992150

Table 3: Hyper Parameter Tunning Results with Test Set

4.1.1 Observations

Testcase 14 - Initial HP in Table 2 + n_layers = 4 + n_direction = 2 + embedding_dim = 400 +
hidden_dim = 128 + batch_size = 256, gave the most optimum results. Following Figure 4 shows
Validate Set Loss trend and Validate Set Accuracy trend for Testcase 14, which gives most optimum
results.

Figure 4: Validate Set Loss and Accuracy Trends

4.1.2 Analysis

Epoch: As seen from the results above Every epoch for the chosen Hyperparameters took approx-
imately 997 seconds to complete. In other words, it took 1994 seconds or 33 minutes to train the
model with 2072 Training batches and 91 Validate Set batches, each of size 256 examples. In addition,
from Figure 4 it can be observed that at approximately 700 batch mark, we receive Mean Validate Set
Loss of 0.02316631044639827 and accuracy of 0.9901986122131348. The loss and and accuracy
marginally reduce and increase respectively for rest of the iterations. We can infer that Human Level
performance in terms of accuracy is about 0.9901986122131348. Furthermore, we can infer that
Early Stopping is not needed as the loss is not overwhelmingly oscillating.

Learning Rate: As seen in Table 3, with Learning Rate set to 0.034 (Testcase 13) or 0.064 (Testcase
14), we are not able to reach the optimal point. In other words, it can be inferred that loss has been
oscillating. As observed in the test results, with learning rate of 0.001, model was able near optimum
point for rest of the test cases.

Hidden Layers: From Table 3, in Testcases 1-5, it can be seen that performance of the model in
terms of loss and accuracy starts to drop as number of LSTM layers are increased beyond 4. In
addition, performance was most optimal with 4 hidden layers.

Hidden Dimensions: Hidden Dimension or number of LSTM units at each layer was chosen to be
176 in the initial tests because majority of the dataset comes from Food Review dataset and as per
Table 1 99% of Food Reviews were 176 words long. From testcase 9 (where hidden_dim was 256

4



and batch_size was 256) and 14 (where hidden_dim was 128 and batch_size was 256) , it can be seen
that as number of LSTM units within a hidden layer increase, Epoch duration also increases. It can be
inferred that computation resources required to train the model increases as number of hidden_dim
increases. Lastly, it can be observed that reducing the hidden_dim from 176 to 128 did not affect the
performance.

Embedding Dimension: As seen in testcase 8 of Table 3, increasing Embedding Dimension from
300 to 400 did not have drastic impact on the performance of the model.

Dataset: As discussed in Dataset Exploration section, Food Reviews dataset, which is the largest
dataset out of the 2 used for training the model, has overwhelming number of 4 and 5 star reviews.
In addition, it can be seen from Figure 4, the model nears to the optimal point fairly quickly at
approximately 700 batch mark. One of the reasons why this could be happening is because the dataset
is not balance i.e. there are more number of review with 4 or 5 ratings compared to review with
ratings of 1-3. It would be desireable to train this model with dataset consisting of reviews whose
ratings are even distribution across the 5 classes.

4.2 Tuning Decision

Hyper-Parameter tuning is a very heuristic and empirical task. It not only requires experience and
knowledge in Deep Learning field, but also requires insights into the datasets under training. In
addition, methodical approach is required to fine tune the hyper parameters. We initiate hyper
parameters tuning by choosing batch_size (512) that was large enough to fit in the memory and reduce
number of iterations per test execution. Next we, started tuning performance by varying number
of hidden_layers and then varied parameters such as hidden_dim, n_direction, embedding_dim,
learning_rate and batch_size.

5 Next Steps

As a next step, the goal of the team was to implement Transformer model that relies on attention
mechanism to execute dependencies between input and output and compare performance of it with
that of LSTM model. Team was able to implement Transformer model using BERT; however,
roadblocks were faced as it BERT code was unable to use GPU in tokenizing large set of data
resulting in taking long time in tokenizing data on CPU using BERT. In addition, once tokenization
using BERT was successful, there were embedding Index Out of Range that blocked the progress of
training using Transformers model.

In addition, it would be desireable to use more balanced dataset as the current dataset has overwhelm-
ing number of 4 and 5 star reviews. Moreover, although current model is trained on reviews from
books, DVDs, electronics, house appliances and food products, it would be desireable to use this
model as transferred learning to other product sentimental analysis such as wine review, car review
etc.

6 Contributions

Great team work in this final project although we are fully remote in this pandemic period. Yecheng
and Aditya proposed the datasets and topic selection. Aditya did the valuable dataset distribution
analysis. Aditya and Yechang proposed the overall methodology and the Deep Learning architecture,
Huaping helped iterate into steps.

Aditya worked on many lines of code for the LSTM solution, triaging and debugging. If we had
more time, would polish and triage more on the Transformers solution which both Aditya and
Yecheng spent whole days to tune.

Huaping worked on the AWS GPU environment setup, and executed majority of the tests during the
Hyper Parameter tuning. Test results analysis are done by all of the members.

Finally we really appreciated all the helps we got from the section videos, piazza replies and TA
Office Hours. Huge thanks for the overall TA teams and professor Andrew and instructor Kian,
special thanks to our project mentor Avoy Datta.

5



References

[1] J. Blitzer, M. Dredze, F. Pereira, "Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation
for Sentiment Classification." Association of Computational Linguistics (ACL), 2007

[2] Amazon Fine Food Review https://www.kaggle.com/snap/amazon-fine-food-reviews

[3] S. Hochreiter, and J. Schmidhuber. "LONG SHORT-TERM MEMORY." Neural ComputationNovember
1997

[4] - Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, pages 1746–1751.

[5] - Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detection? In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics, pages 1006–1011.

[6] T. Young, D. Hazarika, S. Poria and E. Cambria, "Recent Trends in Deep Learning Based Natural Language
Processing [Review Article]," in IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55-75, Aug.
2018, doi: 10.1109/MCI.2018.2840738.

[7] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level sentiment classification,”
in Proc. Conf. Empirical Methods Natural Language Processing, 2016, pp. 606–615.

[8] Y. Ma, H. Peng, and E. Cambria, “Targeted aspectbased sentiment analysis via embedding commonsense
knowledge into an attentive LSTM,” in Proc. Association Advancement Artificial Intelligence Conf., 2018, pp.
5876–5883.

[9] D.S. Sachan, M. Zaheer, R. Salakhutdinov, "Revisiting LSTM Networks for Semi-Supervised Text Classifi-
cation via Mixed Objective Function", arXiv: 2009.04007

Appendix

Review Rating Distribution

Figure 1: Review Rating Distribution

Review Length Distribution

Figure 2: Review Length Distribution

6



Parameters JHU Dataset Food Review Dataset
count 8000.000000 568454.000000
mean 135.251500 75.992474
std 150.860587 46.694354
min 1.000000 21.000000
25% 49.000000 44.000000
50% 90.000000 59.000000
75% 162.000000 83.000000
99% 739.010000 176.000000
max 3393.000000 176.000000

Table 1: Statistics for JHU and Food Review Dataset

Statistics for JHU and Food Review Dataset

Hidden Layer Hyper Parameter Tuning

Figure 3: Hidden Layer Hyper Parameter Tuning

Hidden Dimension Hyper Parameter Tuning

Figure 4: Hidden Dimension Hyper Parameter Tuning

7


	Problem Description
	Dataset Exploration
	 Proposed Methodology 
	Model
	High Level Algorithms

	Hyper parameters Tuning
	Hyperparameter Tuning Results
	Observations
	Analysis

	Tuning Decision

	Next Steps
	Contributions

