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Abstract

Nearly half of languages spoken today are considered
endangered and there are many ongoing efforts to re-
cord remaining speakers of these languages. As record-
ing audio is much easier than transcribing recorded au-
dio, language documentation efforts tend to yield large
amounts of untranscribed audio, which is difficult to in-
dex and search. In this work, we investigate how access
to untranscribed audio can be improved using query by
example spoken term detection (QbE-STD). We extend
recent work on QbE-STD using convolutional neural
networks (CNNs) and additionally test these CNNs on
language documentation data from two Australian Ab-
original languages, Kaytetye and Warumungu. Results
showed that the CNNs outperformed the baseline sys-
tem based on Dynamic Time Warping (DTW) and at a
promising level of performance for use in language doc-
umentation projects.

1 Introduction

Of the estimated 7,000 languages in the world today
nearly half of them may no longer exist after a few more
generations. There are thus many ongoing efforts to
document remaining speakers of endangered languages
and to help revitalise such languages by developing lan-
guage learning materials. For a number of these efforts,
how easily recorded language resources may be used by
all interested parties — from language teachers, to com-
munity members, to linguists — is directly impacted by
how straightforwardly these resources can be searched
and retrieved.

This project aims to provide an experimentally-
informed evaluation and discussion of how access could
be improved for one particular type of language resource
— untranscribed speech. Untranscribed speech is partic-
ularly problematic for search and retrieval in language
documentation contexts as information retrieval systems
are typically text-based and there is rarely the volumes of

already-transcribed material necessary to train a speech-
to-text system with a sufficient level of accuracy for prac-
tical use.
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Figure 1: An illustration of Query-by-Example Spoken
Term Detection (QbE-STD)

In this project, we investigate to what extent access to
untranscribed audio in language documentation corpora
can be improved through the use of query-by-example
spoken term detection (QbE-STD). QbE-STD is defined as
the task of finding all regions within a set of audio doc-
uments in which a spoken query term occurs. Figure 1
below illustrates the task where a query term (e.g. ‘cof-
fee’) is searched in a corpus of two reference documents.
The term is correctly detected at the end of Document
1 (e.g. ‘T had some coffee’), as shown by the green box,
while none are detected in Document 2 (e.g. ‘It is rainy
today’).

2 Related work

State-of-the-art approaches to QbE-STD typically use
an iterative Dynamic Time Warping (DTW) approach,
where a window the size of the query is moved along
the reference document and a DTW-based distance score
is calculated at each step. Depending on the size of
the corpus and number of queries to be searched, this
method can be computationally expensive. Nevertheless,
DTW has consistently been shown to be hard to beat and
provides a competetive baseline, e.g. [1], [2].
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Figure 2: Distance matrices between spectral features of a reference document and two different queries. Occurence
of a query is associated with a quasi-diagonal band indicating a high degree of spectral and temporal correlation.

An alternative approach based on convolutional
neural networks (CNNs) has recently been proposed in
[1], [2]. In this approach, the task of QbE-STD is refor-
mulated as an image classification problem. As shown
above in Figure 2, the occurrence of a spoken query
within a reference document is associated with the pres-
ence of a quasi-diagonal band (representing a high degree
of spectral and temporal correlation) in the distance mat-
rix between the features of the spoken query and those
of the reference document.

Results from [1] showed that the CNN-based ap-
proach outperformed the DTW baseline across all lan-
guages in the Spoken Web Search (SWS2013) benchmark
dataset. This dataset includes a wide variety of languages,
including several ‘low-resource’ African languages (isiX-
hosa, isiZulu, Sepedi, Setswana). However in [2], a later
study by the same authors on the same datasets in which
multilingual bottleneck features were used instead of the
phone posteriors in [1], the DTW baseline was mostly on
par with the CNN-based method and outperformed both
the CNN and end-to-end methods for the lower resource
languages in the SWS2013 dataset [2, Fig. 9].

In this project, we perform a similar set of CNN- vs.
DTW-based QbE-STD system comparisons as in [1], [2].
In place of training bottleneck feature extractors from
scratch, we use an off-the-shelf bottleneck feature ex-
tractor [3].! In addition, we also examine the perform-
ance differences between the CNN architecture proposed
in [1], [2] (henceforth ‘Ram2018’) and other standard im-

age classification architectures such as VGG and ResNet.
We test these systems on language documentation cor-
pora from two Australia Aboriginal languages and also
test the Ram2018 model trained for this project on the
SWS2013 dataset to provide a point of comparison with
prior work.

3 Datasets

Table 1 below provides an overview of the datasets used
in this project. Note for SWS2013 setup, both the devel-
opment and evaluation queries are searched on the same
corpus (i.e. of 10,726 files shown below). Following [1],
[2], 495 of the 505 queries (1,510 tokens) are used for
training the CNNs. For the training phase, true negat-
ives were randomly sampled at each epoch to provide a
1:1 ratio of positive and negative examples. The remain-
ing 10 of 505 dev queries were held out as a Training-Dev
set. For the current project, we use the Warumungu Pic-
ture Dictionary (WPD) as the development set. The two
tests sets (I and II) of interest are the Kaytetye Picture Dic-
tionary (KPD; single speaker) and the Kaytetye Learner’s
Guide (KLG; multiple speakers). Both are language learn-
ing resources for Kaytetye with accompanying audio,
which are representative data for the use cases of interest
for this project. Finally, to compare our Ram2018 model
to those in previous work, we also test on the SWS2013
evaluation data (Test III).

Table 1: Descriptive statistics of data used in project

Test (CNNs, DTW)

Train Training-dev Dev
(CNNs) (CNNs) (CNNs, DTW) I I 1II (Ram2018-only)
Dataset SWS2013-dev  SWS2013-dev WPD KPD KLG SWS2013-eval
Query set 1,510 10 383 397 157 503
Corpus size 10,762 10,762 383 397 809 10,762
True positives 26,366:26,366 147:27,989 1,130:145,559 1,042:157,609  619:127,013 5,562:5,408,016
& negatives ratio (1:1) (1:190) (1:129) (1:151) (1:205) (1:972)

! Available on https://speech fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor
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Figure 3: Process for constructing the normalised distance matrix from query and reference audio files.

4 Evaluation metric

We use Fy (F3 with 8 = 2) as the evaluation metric for
experiments reported here. Formally defined below in
(1), F provides an interpretable way of weighting recall
over precision (when /3 > 1) or vice versa (when 3 < 1);
i.e. Fig = F; when both are equally weighted. Two com-
mon choices for [ are 0.5 (precision twice as important)
and 2 (recall twice as important).

Precision x Recall
(82 x Precision) + Recall

F5:(1+52)X (1)

While the most appropriate 5 value(s) should be
verified with user experience testing in future studies,
it is clear that a relatively low precision system with
moderate-to-good recall is more useful for our use case
(i.e. with 8 > 1). Users are unlikely to be searching on
untranscribed audio had searches on transcribed audio
already yielded sufficient results of interest. Thus, the
system should try to retrieve as many potentially relev-
ant documents as possible, even if many are false posit-
ives. At the same time, a relatively high false positive rate
in the system is also likely tolerable as this helps discover
and index similar sounding terms which are nonetheless
useful in language documentation settings.

5 Distance matrix construction

We now describe the process for constructing a distance
matrix between a query term and reference audio docu-
ment illustrated above in Figure 3. First, given the au-
dio files for a query () and a reference R, features cor-
responding to 80 activation values per time frame are
extracted using the BUT/Phonexia bottleneck features
extractor. This extraction process yields two feature
matrices Fg of shape (80, M) and Fg of shape (80, N),

where M and N are the lengths of the query and refer-
ence, respectively.

The normalised distance matrix is calculated from
these feature matrices using the standardised Euclidean
distance. First, values within each activation compon-
ent (i.e. rows) in each feature matrix are standardised
to have zero mean and unit variance in order to elimin-
ate scale differences between components. The distance
matrix D of shape (M, N) is then constructed by calcu-
lating the Euclidean distance between each feature vec-
tors qi,...,qu in Fg and ry, ...,7n in Fg (i.e. columns
in each feature matrix). To allow for comparisons across
different combinations of queries and references, values
in D are range normalised to [-1, 1], yielding the norm-
alised distance matrix N D illustrated above in Figure 3.

Given that fixed-size inputs are required for a CNN,
matrices of shape (100, 800) are derived from normal-
ised distance matrices of shape (M, N) by padding or
evenly sampling along each dimension as appropriate.
For example, as shown below in Figure 4a, when both
M < 100 and N < 800, the values of the distance mat-
rix are padded with -1 (the minimum value for normal-
ised distances). On the other hand, when M = 100 and
N > 800 for example as in Figure 4b, the columns of the
distance matrix are evenly sampled.

s
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Figure 4: Deriving fixed-size inputs from variably-sized
normalised distance matrices.
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Figure 5: Illustration of the neural network architectures explored in this project.

6 Neural network architectures and training

The neural network architectures explored in this project
are illustrated above in Figure 5. The Ram2018 network
in Figure 5a is that proposed in 2018 by Ram et al. who
note that the design was informed by “the VGG network
which has been shown to perform well in [the] image
recognition task” [1, p. 93]. Accordingly, we also ex-
plore the QbE-STD performance of a more complex VGG
model such as VGG11 as shown in Figure 5b. Finally,
we also explore the performance of a residual network
(ResNet34, as shown in Figure 5c), which has superceded
VGG networks in image recognition tasks.

To avoid implementational errors, the code for these
networks were adopted from existing codebases with ap-
propriate modifications. For Ram2018, this was the re-
pository associated with [1],2 For VGG11 and ResNet34,
this was the TorchVision models in the PyTorch repos-
itory.> For VGG and ResNet, the modifications needed
were to the number of channels in the input (from 3 to 1),
to the input sizes for the first fully connected (FC) layer
(to work with CNN ouputs given 100 x 800 inputs), and
the number of output classes (from 1000 for ImageNet
to 1 for binary classification). The PyTorch code for all
three networks is available on the GitHub repository as-
sociated with this project.*

Aside from the learning rate, all three networks were
trained using the same procedure. For Ram2018, the

Zhttps://github.com/idiap/CNN_QbE_STD
Shttps://github.com/pytorch/vision/tree/master/torchvision/models

learning rate of 0.001 was used. For VGGI11 and Res-
Net34, a learning rate of 0.0001 was used as upon ini-
tial experimentation training losses did not decrease with
0.001. The Adam optimization algorithm was used to op-
timise binary cross entropy loss. The mini-batch size was
set to 20 and batches of negative examples were sampled
at each epoch. The networks were trained for 50 epochs
with checkpoints every 5 epochs, when performance on
the Training-Dev and Dev data were also evaluated.

7 Results and discussion

The best performing models on the WPD (Dev) data-
set according to their F5 scores are displayed below in
Table 2.

Table 2: Model peformance on the dev dataset (WPD)

Model (Epoch)  F,  Precision Recall
VGG11 (10) 0.580 0.388 0.662
ResNet34 (10) 0.575 0.526 0.589
Ram2018 (5) 0.547 0.366 0.624
DTW (n.a.) 0378 0217  0.465

Note that the best model, VGG11, outperforms both the
DTW baseline and the Ram2018 model in both precision
and recall. While the ResNet34 model attains the highest
precision, it appears to do so at the cost of recall, thus
resulting in an overall lower F.

4See: https://github.com/fauxneticien/bnf_cnn_gbe-std/blob/main/src/Models.py
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Figure 6: Precision-recall curves of model performance on the test

datasets.
Table 3: Model performance on the test datasets. Model — DTW (Baseline) — Ram2018 — ResNet34 — VGGI1
Test | (KPD) Test Il (KLG)
1.00 —
Model £

LKPD I:KLG 075

VGG11 0.553  0.295 IS
ResNet34 0.534  0.281 § 0.50 —

Ram2018 0.503 0.266 a
DTW (baseline)  0.365 0.093 0.25 —
0.00 —

Table 3 displays the results of evaluating the best
performing models discussed above on the test datasets,
KPD and KLG. For both these test sets, VGG11 again at-
tains the highest F5 score. Further, VGG11 consistently
outperforms the other models across various thresholds,
as indicated in Figure 6 (purple line consistently closest
to top-right corner).

Between the tests sets, there is a consistent drop in
performance across all models, where higher perform-
ance is seen on KPD than KLG. The fact that KPD is a
single-speaker dataset and that KLG is a multi-speaker
dataset appears to account for some of this difference.
For example, when predictions of the VGG11 model
on KLG were analysed in two separate subsets (same
speaker in query and reference vs. different speakers in
query and reference), the highest F5 score for the same
speaker subset was 0.351 while for the different speakers
subset it was 0.268.

Finally, we also tested the Ram2018 model trained
for this project on the SWS2013-eval dataset in order to
compare its performance with results previously repor-
ted in [1], [2]. To facilitate this comparison, we gen-
erated Maximum Term Weighted Values (MTWVs) us-
ing the same parameters (cost of false alarm: 1, cost of
missed detection: 100) as in the prior work. Our Ram2018
model achieves a MTWYV of 0.517, higher than the range
of 0.3986 — 0.4115 reported in [2, Table V]. This increase
in performance appears to be compatible with increases
associated with additional languages in training the bot-
tleneck feature extractor reported in [2, Table III]. While
[2] trained their own bottleneck feature extractor from
scratch on a maximum of 5 European languages, this pro-
ject used the pre-trained BUT/Phonexia extractor which
was trained on a typologically-diverse set of 17 languages

[3].3

1 I
1.000.00 0.25

Recall

[
0.75
8 Conclusion and future work

In this project, we examined the performance of three
CNN architectures and a baseline DTW system on the
task of QbE-STD on datasets from two Australian Ab-
original languages. Replicating previous work, all CNN
systems were found to outperform the DTW baseline.
Extending previous work, the VGG11 architecture was
shown to further outperform the network architecture
previously proposed (Ram2018).

The best performing models being found relatively
early in the training process (Epochs 5 - 10) suggests that
all three model architectures are quickly overfitting to
the training data. While the SWS2013-eval dataset was
held out in this project to allow for comparison with pre-
viously reported models, the SWS2013-eval dataset as
well as those from other QbE-STD benchmark datasets
could be added to straightforwardly increase the size of
the training data in future work.

Acknowledgements

Thanks to Samantha Disbray and Myf Turpin for mak-
ing the Warumungu and Kaytetye data available, and
Dhananjay Ram for insightful correspondance about his
prior work. Also thanks to CS230 TAs Jo Chuang and
Shahab Mousavi, and faculty advisor Chris Manning for
helpful input about project direction.

References

[1]
[2]

D. Ram, L. M. Werlen and H. Bourlard, ‘CNN Based Query by Example
Spoken Term Detection.,’ in INTERSPEECH, 2018, pp. 92-96.

D. Ram, L. Miculicich and H. Bourlard, ‘Neural Network based End-to-
End Query by Example Spoken Term Detection, [EEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 28, pp. 1416-1427, 2020.
A. Silnova, P. Matejka, O. Glembek, O. Plchot, O. Novotny, F. Grezl, P.
Schwarz, L. Burget and ]J. Cernocky, ‘BUT/Phonexia Bottleneck Feature
Extractor., in Odyssey, 2018, pp. 283-287.

[3]

SCantonese, Pashto, Turkish, Tagalog, Vietnamese, Assamese, Bengali, Haitian Creole, Lao, Tamil, Zulu, Kurdish, Tok Pisin, Cebuano, Kazach,

Telugu, Lithuanian.



