
1

On the Generation of Music
Investigating Popular Modalities for Musical Representation, Classification and Generation

using Deep Learning Techniques – a Final Report
Alejandro Cid, Alec Janowski, Bowen Jiang

Abstract

We introduce Lil Data, a novel approach to music generation relying on visual representations of
sound. Our algorithm classifies spectrogram images of music using a convolution neural network. Once
trained, we use this convolutional neural network to perform “neural genre transfer” (neural style transfer
on spectrograms from different genres). Although we achieved high accuracy (above 95% for 4 genres)
with a simple four-layer model, neither neural genre transfer nor LSTMs trained on single genres of music
were able to generate pleasing music from spectrogram images. We share the results of our experiment in
order to shed light on the advantages, disadvantages, difficulties and potentials of building deep networks
on raw audio.

1 Introduction

The advent of recorded music marks the beginning of a musical arms race, where new genres and
musical styles emerged at an ever-increasing rate alongside the development of new digital composition
and production methods. Once the audio industry found a way to capture music in a digital format,
producers and musicians gained the ability to manipulate recorded sounds and stitch them together to
create increasingly complex compositions. We believe the next wave of music-creation tools will harness
machine learning techniques to create intricate, mind-bending compositions. This paper will explore a few
cutting edge deep-learning techniques for music encoding, classification and generation using visual as
well as sequence models.

Our system consists of two algorithms. The first, Lil Data, is a convolutional neural network
which takes a spectrogram image of a 5-second chunk of music as input and outputs a prediction of the
given chunk of music’s genre. The other is a Neural Style Transfer algorithm which uses Lil Data’s
weights to blend the spectrograms of two distinct pieces of music, in the hopes of transferring the genre of
one song onto another song. After “genre transfer” has been performed on the spectrogram, we convert
this spectrogram back to audio so we can listen to the output.

2 Related Work

Past methods for music generation relied heavily on MIDI data. Performance RNN​1​ used an
LSTM-based RNN to generate music, resulting in good local dependencies, but lacking in compositional
structure. Magenta’s Music Transformer​2​ took this idea further, using an attention-based system to learn
longer time dependencies than Performance RNN. OpenAI’s previous attempt at music generation,
MuSeNet​3​, composes ‘remixes’ by riffing off of a few given notes to create a brand-new composition in
that style.

2

Because the methods explored above rely on MIDI data to analyze or generate music, they fail to
learn features of sound not represented in MIDI data, such as tone and timbre. This makes it impossible to
generate the human voice and certain styles of highly dissonant styles of electronic music, such as drum
and bass and dubstep. OpenAI’s Jukebox​4​, the most successful raw-audio generation algorithm to date,
aims to resolve these problems by forsaking MIDI data in favor of learning features from raw-audio
through the use of autoencoders.

Our idea for generation, which operates on spectrograms of music, stems from M. Dong’s
approach​5​ to music classification, which relies on a specialized Convolutional Neural Network. We hoped
to build a music generator off of a successful music classifier, by attempting Neural Style Transfer.

3 Dataset and Features

Figure 1: Spectrogram image taken from a 5-second clip of Lo-fi music

Our classifier, Lil Data, was trained on spectrograms taken from 5-second long clips of music
from 8 genres—Trap, Future Bass, Lo-fi, Hardstyle, Young Gravy, Liquid Drum and Bass, House, and
Noise/Non-Music. We had around 8000 training examples divided among these genres, with 1000 and
750 left over for validation and testing respectively. We extracted the spectrogram images using Librosa
with 631 spectrogram features and 631 time steps, yielding inputs of size 631x631x1. We also normalized
our input data using the built in Keras function for normalizing with ResNet 50.

4 Methods

Given the potential difficulty in working with time-series data, we elected to pursue a
convolutional neural network (CNN)-based architecture for our genre classifier. These methods have been
attempted before for similar audio classification tasks with success​5​. In our approach, we transform short
clips of music into spectrograms, 2D images with dual axes of frequency and time, with pixel intensities
corresponding to the amplitude of sound. We previously established that only short portions of audio are
necessary for humans to perform genre classification with near-perfect accuracy and also noted the
importance of time-based elements of music in this task, which suggest that if spectrograms can present
visible differences for music of different genres, they may be excellent candidates for classification.

Our CNN model for classification was fairly simple. It consisted of a (631 x 631) input, 4 (3x3)
Conv layers, 4 (4x4) Max Pooling layers, and one (48) Dense layer with an (8) output. This was trained
for 20 epochs (after which accuracy was found to peak) on our set of 8 genres.

3

Figure 2: Architecture of Lil Data

After building a CNN music classifier, we then attempted to use it to generate new music via
Neural Style Transfer (NST) on spectrogram images. NST works by using the activations of intermediate
layers of a trained CNN to define the content and style of an image as well as the cost of a generated
image; through comparisons to predefined style and content image activations, the generated image can
be passed through the network and its pixels will be updated in gradient descent such that, at convergence,
it will minimize style and content costs, preserving elements of both the style and content of the
predefined images.

The cost functions for cost and style are detailed as follows:

We first attempted style transfer via transfer learning using a VGG-19 CNN pre-trained on
ImageNet followed by Lil Data (supplementary data). For our experiments presented here, lofi and future
bass were used for content and style, respectively, because they present very different spectrograms
(future bass is much denser). We also experimented with Yung Gravy (a whole genre we included
dedicated to the legendary rapper) for our own entertainment. The content image was used to initialize the
generated image to maintain audio integrity and reduce the number of iterations needed.

We also attempted to generate music ​de novo​ using a variety of 50-hidden-unit LSTM networks of depths
(number of LSTM layers) ranging from 2-4. 600 spectrograms of lofi were used to train a one-to-many
model which takes in a single time step (631-by-1 vector) and return a corresponding 5-second-long
spectrogram (631-by-630 matrix); lofi was selected as the genre because it is the sparsest and would
hopefully yield the most realistic spectrograms. Training was conducted for 25 and 50 epochs in various
experiments, as well as a 1000-epoch model which was trained on two training examples to understand
the maximum fidelity that such a model could capture.

https://www.codecogs.com/eqnedit.php?latex=J_%7Bcontent%7D(C%2CG)%5C%20%3D%5C%20%5Cfrac%7B1%7D%7B2%7D%5C%20%5C%7C%5C%7C%5C%20a%5E%7B%5Bl%5D%5BC%5D%7D%20-%20a%5E%7B%5Bl%5D%5BG%5D%7D%5C%7C%5C%7C%5E2#0
https://www.codecogs.com/eqnedit.php?latex=J_%7Bstyle%7D(S%2CG)%5C%20%3D%5C%20%5Csum_%7Bl%7D%5C%20%5Clambda%5E%7B%5Bl%5D%7D%20%5C%7B%20%5Cfrac%7B1%7D%7B(2n_h%5E%7B%5Bl%5D%7Dn_w%5E%7B%5Bl%5D%7Dn_c%5E%7B%5Bl%5D%7D)%5E2%7D%20%5Csum_k%20%5Csum_%7Bk%27%7D%20(G_%7Bkk%27%7D%5E%7B%5Bl%5D(S)%7D%20-%20G_%7Bkk%27%7D%5E%7B%5Bl%5D(G)%7D)%5E2%20%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=J(G)%5C%20%3D%5C%20%5Calpha%20J_%7Bcontent%7D(C%2CG)%5C%20%2B%5C%20%5Cbeta%20J_%7Bstyle%7D(S%2CG)#0

4

5 Experiments/Results/Discussion

Figure 3: Training and validation loss per epoch for Lil Data

The results of our classifiers were a little surprising. Our simple CNN model was able to classify
our 4 genre dataset with 96% accuracy and achieved 81% accuracy on our 8 genre set (in which several
genres sound quite similar to the human ear). This is quite good, especially considering that many of the
misclassifications we analyzed were between near identical genres such as DnB and Future Bass. We
found that adding more layers did not necessarily help our performance either, and we also found that we
needed to use a high dropout rate (50%) to prevent overfitting to specific songs within a genre.

Given the success of our relatively simple CNN, we expected solid results from our ResNet
implementation. Surprisingly, however, the performance was quite poor. We achieved only 34% accuracy
on the 8 genre test set, although the train set accuracy reached 94% fairly consistently. This was clearly
extremely overfit, but we were unable to reduce this and improve our test set accuracy without
significantly dropping the train accuracy to unacceptable levels.

While interpreting these results, we formulated several hypotheses as to why we observed such
high accuracy on the simple network and such poor accuracy with the deep network. The first involves
the input of our CNN when compared with ResNet. ResNet requires a 3 channel input (which we
provided by duplicating our 1 channel image), however, spectrograms are only 1 channel. We believe that
this may have led to many extra useless weights and unnecessary complexity within ResNet. Dealing with
these extra weights likely hurt the accuracy and led to the overfitting we observed. We were able to avoid
this with our CNN by using 1 channel inputs.

Our second hypothesis is that the relative simplicity and lack of noise within the music we chose
allowed a simple model to pick up on features without as much difficulty as traditional music. Our genres
were all electronic, computer generated, and as a result, the spectrograms contained no noise (such as that
you might observe with traditional instruments in genres like rock). Additionally, the “notes” you might
observe in our music were defined by clean and sharp lines, many of which were completely square
waveforms. The well defined edges within our “images” were likely easy for a relatively simple network
to pick up in a high layer, and we think this partly explains our performance.

a. Music generation

Our neural genre transfer algorithms from both the VGG19 and the Lil Data architectures were
able to demonstrate clear visual changes in style in only a few hundred iterations of gradient descent. The

5

VGG19 spectrograms became much brighter and lost clear “lines” of sound, becoming replaced instead
with small checkered patterns of bright pixels. The Lil Data spectrograms also grew brighter with time,
although this seems to be a more uniform brightness increase for all pixels; although the contrast of the
resultant image decreased, there were still clear and sharp “lines” of sound, suggesting that the model
trained on spectrogram data had better learned to preserve these local structures instead of replacing these
sound patterns completely. This difference is also reflected in the audio quality of both resultant
spectrograms; while the VGG19 audio is highly distorted, removing almost all harmonic components of
the music and shifting the perceptible key of music down by around a quarter step, the Lil Data audio
preserves clear percussion and instrumentation at a stable key (A Major) but only introduces a uniform
“buzzing” frequency. The LSTM model, meant to generate a remix given a starting point, was also unable
to pick up on individual sound components and resulted in distorted sounds without harmony.

The results of neural genre transfer were, however, still largely disappointing as no changes in
rhythm, percussion or other instrumentation from the style audio were translated to the generated audio.
Although visually, both algorithms seemed to converge toward a brighter and louder spectrogram, the
added pixel intensities translated to indiscriminate noise in the resultant audio instead of specific changes.
This seems to be because several instruments, when overlapped, could have various frequency
components which also overlap, thus making it very difficult for the algorithm to apply “drums” or
“vocal” components specifically to a generated image, rather than simply creating a pattern which might
reflect the additive sound from several instruments. Additionally, certain patterns are very local to
specific regions in the spectrogram (long lines at the top indicating bass; evenly-spaced vertical lines
often indicating a beat); larger kernel sizes which cover more of an image or intermediate layer would not
be able to capture these patterns as well and could lead to lower-resolution spectrograms, which translates
to a “fuzzier” and less clear audio clip after inverting the spectrogram.

6 Conclusion/Future Work
Our convolutional neural network successfully classified between 8 genres of music. It was able

to learn typical features of different genres from spectrogram data. If we had more time we would focus
on reducing overfitting, as our algorithm consistently performed better on training sets.

Despite the relative success of our music genre classifier operating on spectrograms, our music
generation was noisy and lacked musicality. We believe that the feature-resharing nature of CNNs led
NST to misplace visual components indiscriminately throughout the spectrogram, leading to noise which
degraded the quality of audio instead of novel composition. In addition, the visual models force the
network to learn more difficult visual patterns of certain instruments which could easily be lost in a denser
spectrogram. However, the authors of Jukebox mentioned that NST is still a viable alternative to their
encoder/transformer based methods for music generation, which was another motivating factor for our
decision to adopt this approach. In the future, we hope to implement more sophisticated methods for
music generation, perhaps using transformers and autoencoders for music compression, similar to
OpenAI’s Jukebox​4 ​, which implicitly parameterize musical instruments and style into tokens which can
then be generated and upsampled to produce music without the noise artifacts of raw audio synthesis.
Alternatively, we can re-attempt NST by using a more heavily parameterized visualization of music,
perhaps by hand-selecting features such as entire instruments or better post-processing raw outputs from
the network.

6

7 Contributions
Alec Janowski focused his attention on setting up a remote development environment for the

team. He also wrote the convolutional neural network, which was then experimented on and refined by
the rest of the team. He also primarily worked to train and tune hyperparameters for the neural networks
and softmax classifier.

Alejandro Cid wrote the data-processing utilities used to efficiently convert long-form music
mixes into 5-second spectrograms. He also wrote command line programs to train and test Lil Data as
well as our benchmark softmax classifier. Furthermore, he produced the final project video.

Bowen Jiang wrote the neural genre transfer framework used to generate music as well as the
functions for converting 5-second spectrograms back into audio. He experimented with both VGG-19 and
Lil Data. Furthermore, he attempted an LSTM network to generate music, in order to compare with our
neural genre transfer’s output.

Data retrieval, writing, and research was divided between all members.

8 Supplementary Data

 VGG-19 Lil Data

Pre-training task ImageNet (float32) Spectrogram

Input dimension 631x631x3 631x631x1

Style layers Block1_conv1, block2_conv1,
block3_conv1, block4_conv1

 Conv1, conv2, conv3, conv4

Style weights () 0.3, 0.4, 0.2, 0.1 0.3, 0.4, 0.2, 0.1

Content layer block5_conv1 conv_4

 values 100, 1000 50, 500

Iterations 10 (early stop), 100 (full) 100 (early stop), 500 (full)

https://www.codecogs.com/eqnedit.php?latex=%5Clambda%5E%7B%5Bl%5D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%2C%20%5Cbeta#0

7

References
1. Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2018, August 10). This Time

with Feeling: Learning Expressive Musical Performance. Retrieved November 16, 2020,
from https://arxiv.org/abs/1808.03715

2. Huang, C., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., . . . Eck, D.
(2018, December 12). Music Transformer. Retrieved November 16, 2020, from
https://arxiv.org/abs/1809.04281

3. Barina, G., Topirceanu, A., & Udrescu, M. (2014). MuSeNet: Natural patterns in the
music artists industry. ​2014 IEEE 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI)​. doi:10.1109/saci.2014.6840084

4. Dhariwal, P., Jun, H., Payne, C., Kim, J., Radford, A., & Sutskever, I. (2020, April 30).
Jukebox: A Generative Model for Music. Retrieved November 16, 2020, from
https://arxiv.org/abs/2005.00341

5. Dong, M. (2018, February 27). Convolutional Neural Network Achieves Human-level
Accuracy in Music Genre Classification. Retrieved November 16, 2020, from
https://arxiv.org/abs/1802.09697

https://arxiv.org/abs/2005.00341

