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Abstract 

We introduce Lil Data, a novel approach to music generation relying on visual representations of 
sound. Our algorithm classifies spectrogram images of music using a convolution neural network. Once 
trained, we use this convolutional neural network to perform “neural genre transfer” (neural style transfer 
on spectrograms from different genres). Although we achieved high accuracy (above 95% for 4 genres) 
with a simple four-layer model, neither neural genre transfer nor LSTMs trained on single genres of music 
were able to generate pleasing music from spectrogram images. We share the results of our experiment in 
order to shed light on the advantages, disadvantages, difficulties and potentials of building deep networks 
on raw audio. 
 

1 Introduction 

The advent of recorded music marks the beginning of a musical arms race, where new genres and 
musical styles emerged at an ever-increasing rate alongside the development of new digital composition 
and production methods. Once the audio industry found a way to capture music in a digital format, 
producers and musicians gained the ability to manipulate recorded sounds and stitch them together to 
create increasingly complex compositions. We believe the next wave of music-creation tools will harness 
machine learning techniques to create intricate, mind-bending compositions. This paper will explore a few 
cutting edge deep-learning techniques for music encoding, classification and generation using visual as 
well as sequence models.  

Our system consists of two algorithms. The first, Lil Data, is a convolutional neural network 
which takes a spectrogram image of a 5-second chunk of music as input and outputs a prediction of the 
given chunk of music’s genre. The other is a Neural Style Transfer algorithm which uses Lil Data’s 
weights to blend the spectrograms of two distinct pieces of music, in the hopes of transferring the genre of 
one song onto another song. After “genre transfer” has been performed on the spectrogram, we convert 
this spectrogram back to audio so we can listen to the output. 

 
2 Related Work 

Past methods for music generation relied heavily on MIDI data. Performance RNN​1​ used an 
LSTM-based RNN to generate music, resulting in good local dependencies, but lacking in compositional 
structure. Magenta’s Music Transformer​2​ took this idea further, using an attention-based system to learn 
longer time dependencies than Performance RNN. OpenAI’s previous attempt at music generation, 
MuSeNet​3​, composes ‘remixes’ by riffing off of a few given notes to create a brand-new composition in 
that style. 
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Because the methods explored above rely on MIDI data to analyze or generate music, they fail to 
learn features of sound not represented in MIDI data, such as tone and timbre. This makes it impossible to 
generate the human voice and certain styles of highly dissonant styles of electronic music, such as drum 
and bass and dubstep. OpenAI’s Jukebox​4​, the most successful raw-audio generation algorithm to date, 
aims to resolve these problems by forsaking MIDI data in favor of learning features from raw-audio 
through the use of autoencoders. 

Our idea for generation, which operates on spectrograms of music, stems from M. Dong’s 
approach​5​ to music classification, which relies on a specialized Convolutional Neural Network. We hoped 
to build a music generator off of a successful music classifier, by attempting Neural Style Transfer. 
 

3 Dataset and Features 

 
Figure 1: Spectrogram image taken from a 5-second clip of Lo-fi music 

Our classifier, Lil Data, was trained on spectrograms taken from 5-second long clips of music 
from 8 genres—Trap, Future Bass, Lo-fi, Hardstyle, Young Gravy, Liquid Drum and Bass, House, and 
Noise/Non-Music. We had around 8000 training examples divided among these genres, with 1000 and 
750 left over for validation and testing respectively. We extracted the spectrogram images using Librosa 
with 631 spectrogram features and 631 time steps, yielding inputs of size 631x631x1. We also normalized 
our input data using the built in Keras function for normalizing with ResNet 50. 

 
4 Methods 

Given the potential difficulty in working with time-series data, we elected to pursue a 
convolutional neural network (CNN)-based architecture for our genre classifier. These methods have been 
attempted before for similar audio classification tasks with success​5​. In our approach, we transform short 
clips of music into spectrograms, 2D images with dual axes of frequency and time, with pixel intensities 
corresponding to the amplitude of sound. We previously established that only short portions of audio are 
necessary for humans to perform genre classification with near-perfect accuracy and also noted the 
importance of time-based elements of music in this task, which suggest that if spectrograms can present 
visible differences for music of different genres, they may be excellent candidates for classification.  

Our CNN model for classification was fairly simple. It consisted of a (631 x 631) input, 4 (3x3) 
Conv layers, 4 (4x4) Max Pooling layers, and one (48) Dense layer with an (8) output. This was trained 
for 20 epochs (after which accuracy was found to peak) on our set of 8 genres. 
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Figure 2: Architecture of Lil Data 

After building a CNN music classifier, we then attempted to use it to generate new music via 
Neural Style Transfer (NST) on spectrogram images. NST works by using the activations of intermediate 
layers of a trained CNN to define the content and style of an image as well as the cost of a generated 
image; through comparisons to predefined style and content image activations, the generated image can 
be passed through the network and its pixels will be updated in gradient descent such that, at convergence, 
it will minimize style and content costs, preserving elements of both the style and content of the 
predefined images. 

The cost functions for cost and style are detailed as follows: 

 

 

 

We first attempted style transfer via transfer learning using a VGG-19 CNN pre-trained on 
ImageNet followed by Lil Data (supplementary data). For our experiments presented here, lofi and future 
bass were used for content and style, respectively, because they present very different spectrograms 
(future bass is much denser). We also experimented with Yung Gravy (a whole genre we included 
dedicated to the legendary rapper) for our own entertainment. The content image was used to initialize the 
generated image to maintain audio integrity and reduce the number of iterations needed. 

We also attempted to generate music ​de novo​ using a variety of 50-hidden-unit LSTM networks of depths 
(number of LSTM layers) ranging from 2-4. 600 spectrograms of lofi were used to train a one-to-many 
model which takes in a single time step (631-by-1 vector) and return a corresponding 5-second-long 
spectrogram (631-by-630 matrix); lofi was selected as the genre because it is the sparsest and would 
hopefully yield the most realistic spectrograms. Training was conducted for 25 and 50 epochs in various 
experiments, as well as a 1000-epoch model which was trained on two training examples to understand 
the maximum fidelity that such a  model could capture. 
  

https://www.codecogs.com/eqnedit.php?latex=J_%7Bcontent%7D(C%2CG)%5C%20%3D%5C%20%5Cfrac%7B1%7D%7B2%7D%5C%20%5C%7C%5C%7C%5C%20a%5E%7B%5Bl%5D%5BC%5D%7D%20-%20a%5E%7B%5Bl%5D%5BG%5D%7D%5C%7C%5C%7C%5E2#0
https://www.codecogs.com/eqnedit.php?latex=J_%7Bstyle%7D(S%2CG)%5C%20%3D%5C%20%5Csum_%7Bl%7D%5C%20%5Clambda%5E%7B%5Bl%5D%7D%20%5C%7B%20%5Cfrac%7B1%7D%7B(2n_h%5E%7B%5Bl%5D%7Dn_w%5E%7B%5Bl%5D%7Dn_c%5E%7B%5Bl%5D%7D)%5E2%7D%20%5Csum_k%20%5Csum_%7Bk%27%7D%20(G_%7Bkk%27%7D%5E%7B%5Bl%5D(S)%7D%20-%20G_%7Bkk%27%7D%5E%7B%5Bl%5D(G)%7D)%5E2%20%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=J(G)%5C%20%3D%5C%20%5Calpha%20J_%7Bcontent%7D(C%2CG)%5C%20%2B%5C%20%5Cbeta%20J_%7Bstyle%7D(S%2CG)#0
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5 Experiments/Results/Discussion 

 
Figure 3: Training and validation loss per epoch for Lil Data 

The results of our classifiers were a little surprising. Our simple CNN model was able to classify 
our 4 genre dataset with 96% accuracy and achieved 81% accuracy on our 8 genre set (in which several 
genres sound quite similar to the human ear). This is quite good, especially considering that many of the 
misclassifications we analyzed were between near identical genres such as DnB and Future Bass. We 
found that adding more layers did not necessarily help our performance either, and we also found that we 
needed to use a high dropout rate (50%) to prevent overfitting to specific songs within a genre. 

Given the success of our relatively simple CNN, we expected solid results from our ResNet 
implementation. Surprisingly, however, the performance was quite poor. We achieved only 34% accuracy 
on the 8 genre test set, although the train set accuracy reached 94% fairly consistently. This was clearly 
extremely overfit, but we were unable to reduce this and improve our test set accuracy without 
significantly dropping the train accuracy to unacceptable levels. 

While interpreting these results, we formulated several hypotheses as to why we observed such 
high accuracy on the simple network and such poor accuracy with the deep network. The first involves 
the input of our CNN when compared with ResNet. ResNet requires a 3 channel input (which we 
provided by duplicating our 1 channel image), however, spectrograms are only 1 channel. We believe that 
this may have led to many extra useless weights and unnecessary complexity within ResNet. Dealing with 
these extra weights likely hurt the accuracy and led to the overfitting we observed. We were able to avoid 
this with our CNN by using 1 channel inputs. 

Our second hypothesis is that the relative simplicity and lack of noise within the music we chose 
allowed a simple model to pick up on features without as much difficulty as traditional music. Our genres 
were all electronic, computer generated, and as a result, the spectrograms contained no noise (such as that 
you might observe with traditional instruments in genres like rock). Additionally, the “notes” you might 
observe in our music were defined by clean and sharp lines, many of which were completely square 
waveforms. The well defined edges within our “images” were likely easy for a relatively simple network 
to pick up in a high layer, and we think this partly explains our performance. 

 
a. Music generation 

Our neural genre transfer algorithms from both the VGG19 and the Lil Data architectures were 
able to demonstrate clear visual changes in style in only a few hundred iterations of gradient descent. The 
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VGG19 spectrograms became much brighter and lost clear “lines” of sound, becoming replaced instead 
with small checkered patterns of bright pixels. The Lil Data spectrograms also grew brighter with time, 
although this seems to be a more uniform brightness increase for all pixels; although the contrast of the 
resultant image decreased, there were still clear and sharp “lines” of sound, suggesting that the model 
trained on spectrogram data had better learned to preserve these local structures instead of replacing these 
sound patterns completely. This difference is also reflected in the audio quality of both resultant 
spectrograms; while the VGG19 audio is highly distorted, removing almost all harmonic components of 
the music and shifting the perceptible key of music down by around a quarter step, the Lil Data audio 
preserves clear percussion and instrumentation at a stable key (A Major) but only introduces a uniform 
“buzzing” frequency. The LSTM model, meant to generate a remix given a starting point, was also unable 
to pick up on individual sound components and resulted in distorted sounds without harmony. 
 

The results of neural genre transfer were, however, still largely disappointing as no changes in 
rhythm, percussion or other instrumentation from the style audio were translated to the generated audio. 
Although visually, both algorithms seemed to converge toward a brighter and louder spectrogram, the 
added pixel intensities translated to indiscriminate noise in the resultant audio instead of specific changes. 
This seems to be because several instruments, when overlapped, could have various frequency 
components which also overlap, thus making it very difficult for the algorithm to apply “drums” or 
“vocal” components specifically to a generated image, rather than simply creating a pattern which might 
reflect the additive sound from several instruments. Additionally, certain patterns are very local to 
specific regions in the spectrogram (long lines at the top indicating bass; evenly-spaced vertical lines 
often indicating a beat); larger kernel sizes which cover more of an image or intermediate layer would not 
be able to capture these patterns as well and could lead to lower-resolution spectrograms, which translates 
to a “fuzzier” and less clear audio clip after inverting the spectrogram. 
 

6 Conclusion/Future Work 
Our convolutional neural network successfully classified between 8 genres of music. It was able 

to learn typical features of different genres from spectrogram data. If we had more time we would focus 
on reducing overfitting, as our algorithm consistently performed better on training sets. 

Despite the relative success of our music genre classifier operating on spectrograms, our music 
generation was noisy and lacked musicality. We believe that the feature-resharing nature of CNNs led 
NST to misplace visual components indiscriminately throughout the spectrogram, leading to noise which 
degraded the quality of audio instead of novel composition. In addition, the visual models force the 
network to learn more difficult visual patterns of certain instruments which could easily be lost in a denser 
spectrogram. However, the authors of Jukebox mentioned that NST is still a viable alternative to their 
encoder/transformer based methods for music generation, which was another motivating factor for our 
decision to adopt this approach. In the future, we hope to implement more sophisticated methods for 
music generation, perhaps using transformers and autoencoders for music compression, similar to 
OpenAI’s Jukebox​4 ​, which implicitly parameterize musical instruments and style into tokens which can 
then be generated and upsampled to produce music without the noise artifacts of raw audio synthesis. 
Alternatively, we can re-attempt NST by using a more heavily parameterized visualization of music, 
perhaps by hand-selecting features such as entire instruments or better post-processing raw outputs from 
the network. 
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7 Contributions 
Alec Janowski focused his attention on setting up a remote development environment for the 

team. He also wrote the convolutional neural network, which was then experimented on and refined by 
the rest of the team. He also primarily worked to train and tune hyperparameters for the neural networks 
and softmax classifier. 

Alejandro Cid wrote the data-processing utilities used to efficiently convert long-form music 
mixes into 5-second spectrograms. He also wrote command line programs to train and test Lil Data as 
well as our benchmark softmax classifier. Furthermore, he produced the final project video. 

Bowen Jiang wrote the neural genre transfer framework used to generate music as well as the 
functions for converting 5-second spectrograms back into audio. He experimented with both VGG-19 and 
Lil Data. Furthermore, he attempted  an LSTM network to generate music, in order to compare with our 
neural genre transfer’s output. 

Data retrieval, writing, and research was divided between all members. 
 

8 Supplementary Data 

 

 
  

  VGG-19 Lil Data 

Pre-training task ImageNet (float32) Spectrogram 

Input dimension 631x631x3 631x631x1 

Style layers  Block1_conv1, block2_conv1, 
block3_conv1, block4_conv1 

 Conv1, conv2, conv3, conv4 

Style weights ( ) 0.3, 0.4, 0.2, 0.1 0.3, 0.4, 0.2, 0.1 

Content layer  block5_conv1 conv_4 

 values 100, 1000 50, 500 

Iterations 10 (early stop), 100 (full) 100 (early stop), 500 (full) 

https://www.codecogs.com/eqnedit.php?latex=%5Clambda%5E%7B%5Bl%5D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%2C%20%5Cbeta#0
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