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Abstract

Increasing number of videos are becoming available in today’s world. However, it
is impossible for a person to manually analyze all of the videos and extract useful
information out of them. In this project, we implement a deep learning-based
computer vision algorithm for human activity recognition. We use transfer learning
to adapt the SlowFast network pre-trained on human activity recognition tasks to
the VIRAT video dataset. We also combine the last few layers of the YOLO model
with the SlowFast model in order to extract the bounding boxes of the human
activity.

1 Introduction

The problem of human activity recognition through computer vision has many important applica-
tions such as elderly assistance, patient monitoring, surveillance, human-computer interaction, and
information retrieval. Although the problem may appear similar to analyzing static images, it adds
more complexity to the problem because there is also a temporal dimension in addition to spatial
dimension in the data. This also makes the problem more computationally demanding.

The SlowFast network is an example of a deep-learning method where temporal and spatial features
are explicitly computed separately but also fused together throughout the network while keeping
the computational costs down [Fei+19]. We adopt an open-source implementation of the SlowFast
network and apply transfer learning to the VIRAT dataset [Moo+15].

The SlowFast network is trained on the AVA dataset which consists of close-up view of the human
performing an action. Its main objective is to classify the activity itself, but not the spatial localization
of the activity. In contrast to AVA, the VIRAT dataset is a surveillance video consisting of long-shot
views where the main human subject appears relatively small in the image as shown in Figure 1.
Therefore the spatial localization becomes important in order to correctly detect where the human
activity is happening in the image.

The SlowFast network uses ground-truth bounding boxes as inputs to its RoIAlign layer to classify
the human activity. One possible method of spatial localization is to add a region proposal network to
the model similar to the Faster-RCNN model. However, using RPN adds complexity since it requires
training two separate networks. In contrast, the YOLO model outputs both the bounding boxes and
class probabilities without having to train two separate networks [Red+16]. In order to get bounding
boxes along with class probabilities, we augment the SlowFast network with the last few layers of
YOLO model and incorporate its loss function. This allows training the whole network end-to-end
and get the bounding boxes as the output in addition to the class probabilities.

CS230: Deep Learning, Autumn 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Relevant Work

Similar to most computer vision problems, human activity recognition problems are mostly handled
with architectures involving convolutional neural networks. However, there are some differences
among the papers in how to handle the temporal aspect of the problem. One of the earlier papers in
human action recognition uses two parallel streams of spatial information and temporal information
to make the human activity classification [SZ14]. The two separate streams use parallel convolutional
networks to make independent predictions, which are then combined to give the final prediction. There
have also been 3D convolutional networks in order to better incorporate the temporal information
[Dib+17]. There are also LSTM-based papers [Ma+17; Wan+16] which attempt to better model
longer-term structures. Recently, a model that combines BERT with 3D convolutional networks has
been published as well [KKA20]. Other relevant work include the use of pose estimation in action
recognition [LPT18].

2.1 SlowFast Network

We adopt the SlowFast network as the baseline model because it achieves the state of the art
performance on the AVA v2.1 Benchmark with the mAP of 28.2. The SlowFast network is a two-
pathway CNN model with one pathway processing a stream of lower frame rate while the other
pathway at a higher frame rate [Fei+19]. The slower frame rate captures semantic information while
the higher frame rate captures the changes in the motion. In order to keep the computation down, the
higher frame rate use a fewer number of channels in the convolutional layers. Unlike previous models,
the SlowFast network does not require extracting hand engineered features such as optical flow. It is
also loosely based on how human visual systems work where Magnocellular cells operate at high
temporal frequency and respond to fast temporal changes, while Parvocellular cells are sensitive to
spatial details and color at lower temporal resolution.

The backbone for the SlowFast model is the residual network blocks. It uses either the ResNet 50 or
ResNet 101 architecture depending on the task. Unlike the earlier models where fusion of temporal
and spatial features happen at the end of the model [SZ14], fusion of the two path ways is performed
throughout the network after each ResNet stage. Fusion is performed by passing the activations of the
fast path through Conv3D, BatchNorm3D, and Relu blocks and concatenating with the activations of
the slow path way. The fused output is then propagated to the next ResNet stage of the slow path way.

The final layers of the model consist of the ROI Align blocks followed by a fully-connected layer and
a softmax layer to classify the activity.

3 Dataset

The dataset used is the VIRAT dataset Release 2.0 . It is a video surveillance dataset consisting
of various aerial and ground camera view points. The ground dataset contains 11 different scenes
captured at 1080p or 720p at 24fps or 30fps. Each scene contains multiple video clips. We utilize
only the ground dataset. The list of classes of actions identified in the dataset is listed in Figure 1.
The dataset provides bounding boxes for the events. The 52% of classes in the dataset consists of
"Person carrying an object", while the next dominant class is "Person entering a facility" at 10%.
This leads to a class imbalance problem. Addtionally, in contrast to the AVA dataset where the videos
are close-up views of the activity being performed, the subject of human activity appears relatively
small compared to the overall size of the image.

4 Method

The open-source implementation of the SlowFast network is extended to support the new VIRAT
dataset. We apply transfer learning to the new dataset by using the pre-trained weights on the AVA
2.1 dataset. In addition, the two fully connected layers of the YOLO model is added as a separate
branch to the SlowFast network to predict the bounding boxes.
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ID Event Type
1 Person loading an Object to a Vehicle
2 Person Unloading an Object from a Car/Vehicle
3 Person Opening a Vehicle/Car Trunk
4 Person Closing a Vehicle/Car Trunk
5 Person getting into a Vehicle
6 Person getting out of a Vehicle
7 Person gesturing
8 Person digging
9 Person carrying an object

10 Person running
11 Person entering a facility
12 Person exiting a facility

Figure 1: Human activity classes in the VIRAT dataset Release 2.0. The right figure shows an
example of a cropped image with a bounding box used during training step

Figure 2: SlowFast Network ResNet RoI head augmented with YOLO head

4.1 Preprocessing

We keep most of the existing preprocessing steps the same as they are performed on the AVA dataset.
The steps consist of randomly cropping the image to be a square of size 224 by 224 pixels. The
original cropping method randomly crops the image regardless of where the bounding box is located,
which could lead to the cropped image not including the bounding box. Unlike with the AVA dataset,
this is very likely to happen with the VIRAT dataset, because it consist of higher resolution videos
and the bounding boxes are relatively small. To avoid the bounding boxes being excluded from the
cropped image, we modify the cropping algorithm such that the bounding box always gets included
in the cropped image. Other preprocessing steps include horizontal flipping and scaling the pixel
values to be in the range [0, 1].

4.2 Model

We modify the baseline SlowFast model by adding the last two fully connected layers of the YOLO
model as a separate branch as shown in Figure 2. We fuse the slow and fast paths by concatenating
the output of temporal pool layers of the two paths. We then use a Conv2D layer with in order to
reduce the number of channels to match the original YOLO model. We perform global average
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Figure 3: Left: Loss curves of training with and without pre-trained weights. Center: Loss curves
with YOLO head. Right: mAP with YOLO head

pooling with kernel size 14 and flatten to further reduce the output dimension to 1024. Otherwise, the
number of parameters of the model explodes because of the subsequent fully connected layers. Since
we have twelve classes to predict, the size of the final output layer is 7*7*(B*5+12) where B=2. The
final output layer uses Sigmoid activation to keep the center coordinates, width, and height of the
bounding boxes to be within the range [0,1].

We use the ResNet 101 as the backbone network. We take 32 frames around the key frame where the
human activity occurs and downsample by two to process 16 frames. We configure the parameter
α = 4 so that the slow path processes four times less frames than the fast path. However, we set
β = 8 so that the fast path has one eighth of the number of channels as the slow path.

The number of parameters in the baseline SlowFast model is 59,185,748. With the YOLO head, the
number of parameters is increased to 89,034,324.

4.3 Training

We use p2.xlarge instance with a single GPU with 12 GiB of memory for training the network. We
can fit a batch size of three without freezing the earlier layers. With the earlier layers frozen, we can
train with batch size of 16. The learning rate policy uses warm up time of four epochs to slowly ramp
up the learning rate from 0.0001 to 0.0375. The learning rate then decreases by a factor of ten at
epoch 41 and another factor of ten at epoch 49. Stochastic gradient descent with Nesterov momentum
of 0.9 and weight decay of 1e-4 is used as an optimizer. The overall loss function is binary cross
entropy function for multi-label classification summed with the YOLO loss function. We initialize
with the pre-trained weights on the AVA dataset and fine-tune the weights with the VIRAT dataset.

To speed up the training, we also try freezing the first four ResNet stages of the backbone network
and only train the last ResNet stage, the RoIAlignHead and the YoloHead blocks.

We use 8463 unique bounding boxes for training. For each bounding box, the fast path processes 32
frames while the slow path processes 8 frames. Without freezing the earlier weights, it takes about
2.5 hours to train one epoch. With the first four ResNet stages frozen, it takes around one hour to
train one epoch.

5 Results and Discussion

The results show that using the pre-trained weights from training on the AVA dataset greatly helps
in speeding up training when compared to training from scratch. As shown in Figure 3, the loss
curve converges much faster when pre-trained weights are used. However, the loss plateaus early
in the training and does not improve further. The mean average precision score achieved with the
validation set is very low at around 0.1 as shown in Table 1. While the class "Person carrying an
object" achieves the average precision of 0.98, it is likely because the dataset is imbalanced and
mostly consists of that class.

The YOLO head did not produce good bounding boxes either. The output bounding boxes always
seem to be one of the four quadrants as shown in Figure 4 and are not very tight around the human
activity. The mean IoU value for 2,000 validation annotations is 0.011. The max IoU value is 0.047.
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Class Average precision
Person Closing a Vehicle/Car Trunk 0.00069
Person Opening a Vehicle/Car Trunk 0.00068
Person Unloading an Object from a Car/Vehicle 0.00121
Person carrying an object 0.97643
Person digging nan
Person entering a facility 0.00348
Person exiting a facility 0.03385
Person gesturing 0.04168
Person getting into a Vehicle 0.08769
Person getting out of a Vehicle 0.00339
Person loading an Object to a Vehicle 0.00032
Person running 0.02116
mAP 0.10642

Table 1: mAP results

Figure 4: The left figure shows "Person carrying an object". The center shows " Person entering a
facility". The right shows "Person gesturing". The red box is the ground truth annotation. The blue
box is the bounding box output by the YOLO head.

The potential causes of the poor perfrmance include: misalignment of bounding boxes and the
activity in the training data, relatively small size of the human subjects in the video, and incorrect
implementation of YOLO loss function.

6 Conclusions

By combining the SlowFast network and architecture of YOLO, we have a hybrid model that can
predict class probabilities as well as predict the bounding boxes. While the original SlowFast network
is useful in predicting human activity given the ground-truth bounding box, the hybrid model is
useful classifying human activity in surveillance videos where the spatial and temporal location of
the activity is not known a priori.

More validation of whether the preprocessing step was done correctly to prepare the VIRAT video
frames and annotations for ingestion by the SlowFast implementation is neded. The correctness of
the YOLO loss implementation needs to be further validated as well to improve the performance of
the model. Different learning rates need to be explored to escape the plateau loss function as well.
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