Deep Kurve!

Taylor Howell Lawrence Peirson
Department of Mechanical Engineering Department of Physics
Stanford, CA 94305 Stanford University
Stanford University Stanford, CA 94305
thowell@stanford.edu alpv9b@stanford.edu
Abstract

In this work we explore reinforcement-learning algorithms for training an agent to
play the cult-classic computer game Achtung Die Kurve!. In this effort we modify
an existing PyGame environment and experiment training an agent using open-
source stochastic policy gradient, proximal policy optimization, advantage actor
critic, Q-learning, and MuZero implementations. Ultimately, our experiments are
unsuccessful in training an agent to have consistent and significantly improvemed
performance compared to a random policy. We conclude with discussion and
recommendations for achieving improved performance in future work.

CS230: Deep Learning, Fall 2020, Stanford University, CA.



1 Introduction

~J

Figure 1: A screen capture from our implementation of Achtung, Die Kurve!. Each player controls a different
colored agent and the observations is a RGB image with dimensions 320 x 320.

Achtung, die Kurve!—also known as Curve Fever—is a multi-player computer game released in
1995 [7]. In the game, each player commands a 2D agent which has constant forward velocity
by using two keyboard inputs, left and right. Sharp turns are not possible. As the agent moves it
leaves a trail, with occasional random gaps, that opponent players must avoid, otherwise they lose.
Additionally, players lose if they touch the boundary of the environment. The last remaining player
wins.

To date, there are no existing reinforcement learning agents we could find that perform at super-human
or human-competitive levels. While this game is popular on the internet—arguably achieving cult
status—and attempts have been made to train competitive agents, the game poses subtle difficulties
to many classic reinforcement-learning approaches. First, the game is designed to be played human v.
human and does not have bots to train against. One approach then is to train an agent using imitation
learning from experience generated by humans. However, this technique would require hundreds
of thousands of games, each of which can take tens of seconds to play and requires two humans.
As aresult, this approach is not tractable. Alternatively, self play can be utilized to train an agent’s
policy by playing against itself. This approach has been successfully applied to a number of games
including Backgammon [|6]] and Go [4]]. However, unlike these games, Achtung, Die Kurve! does
not have a sequential player structure where one player makes a move, then the other player makes
their move. As a result, the game’s stepping dynamics must be designed such that both player act
simultaneous using the same observation in order to leverage existing self-play approaches and tools.

Project. In this project, we experiment with open-source reinforcement-learning algorithms to train
an agent to play Achtung, Die Kurve!.

First, we modify an existing PyGame implementation to follow the OpenAl Gym [1]] standard. Then,
we enable a sequential player structure for self play by modifying the stepping structure. Additionally,
we implement a number of tweaks to the game environment to create a training environment based
on suggests from the literature for agents learning to play Atari games.

Next, we experiment with training an agent on a simple scenario: one player trying to survive as long
as possible. This ended up being the primary scenario we focused on in this project. The scenario
has simple graphics and a small discrete action space that is similar to the many Atari games that
have been successfully mastered by reinforcement-learning agents [2]. We employ open-source
implementations of stochastic policy gradient, proximal policy optimization, and Q-learning to train
agents for this scenario. The hope is that this trained agent will have learned to avoid walls and
self collisions and that this will translate into good performance in the multi-player scenario or be
amenable for transfer learning to a self-play algorithm. We verify the performance of agents trained
with these approaches using a uniform random policy as a baseline.

Finally, we try an alternative approach that directly leverages self-play by using an open-source
implementation of MuZero [3] to train the agent. Here deep learning is utilized to learn a policy, value-



function approximator, and game dynamics, all represented using deep neural networks. Training
using this approach requires the modified sequential player stepping structure.

2 Approach

In this section, we first describe the Achtung, Die Kurve! game and training environments. Next,
we describe the open-source reinforcement-learning tools we employ. The code from our project is
available at:

https://github.com/thowell/achtung

2.1 Environment

We implement our own version of Achtung, Die Kurve! in Python using PyGame. The implementation
was initially based on an existing repository

https://github.com/janowskipio/FarBy

but has been extensively modified. The modifications are primarily removal of the existing user
interface and additions include functionality required by an OpenAl gym environment.

Game environment. The dynamics of the game environment are governed by a step function.
observation, reward, done, info < step(action)

At each time step this function that takes as input action and returns observation, reward, and
done. Additionally, info can return useful internal information about the environment, but we do
not implement or utilize this functionality. The step function runs the game dynamics for one player
and a given action, then increments the current player. The state of the game is only updated after all
players have taken an action. Unlike classic board games, in this environment, both players take an
action based on the previous state without knowing the other players’ current actions.

The action space for this environment is discrete, having three options: do nothing, left, right. The
observation returned after calling step is an 320 x 320 RGB image of the environment. An
example is shown in Fig. |1l Each reward takes one of three values depending on if the player is alive
and whether the episode is over. We explore various reward schemes in hopes of achieving desired
behavior.

During multi-player play, if only one player remains alive the environment resets. For single-player
mode, when the player experiences a collision the environment resets. Further, done returns true and
the episode is complete.

The game environment is contained in the Achtung class and can be played by running,

$ python achtung.py num_players.
where the additional argument, num_players € [1,4], is used to set the number of players.

Training environment. The literature for training reinforcement-learning agents to play Atari
games suggests a number of modifications to game environment in order to learn better policies.
First, each RGB image observation is downsampled by a factor of 4 and converted to a normalized
grayscale image with dimension 80 x 80. This preprocessing step is visualized in Fig. [2] The benefit
of this step is a reduction of the input size which should speed up training.

Next, we implement frame skipping and an observation history. Here, the action selected by the
policy is applied to the game environment for 4 steps. The rewards are summed over these steps
and returned. An element-wise maximum is taken over the last two processed observations. The
result then replaces the oldest observation from an observation history of length 4. This history is
returned and used as the input to the policy.

The idea behind frame skipping is that selecting the optimal action for each frame is unnecessary as
the game dynamics are not evolving that quickly. Additionally, this should help the policy develop


https://github.com/thowell/achtung
https://github.com/janowskipio/FarBy

Figure 2: Observation processing. The observation (left) returned from the environment after each step is
downsampled by a factor of 4 and converted to a grayscale image (right) before being used as an input to the
policy. This episode lasted 137 steps.

better planning as each action has effects farther into the future. By using a history of observations,
the policy can reason not just about the current state of the game, but about how it is changes.
For example, it should be possible to learn the velocity of the agent. Finally, the maximum over
observations frames is recommended to overcome screen flicker. It’s unlikely that this is an issue for
our environment.

The reward function is: » = +1 if player alive after step; » = —1 else. This reward structure should
encourage the agent to stay alive as long as possible in order to achieve larger rewards and discourage
collisions. For updates during training, the rewards are normalized by subtracting the mean and
dividing by the standard deviation.

The training environment is implemented as the AchtungProcess class and is used for all of the
experiments.

2.2 Reinforcement learning

In this work, we leverage existing implementations of reinforcement-learning algorithms.

Stochastic policy gradient. We try a simple approach, stochastic policy gradient [5] to train a
single agent to stay alive as long as possible. First, we utilize an implementation,

http://karpathy.github.i0/2016/05/31/rl1/,

that was designed to play the Atari game Pong. Using this implementation, the Pong agent is able to
consistently score points after ~ 1 day of training on a laptop computer. The policy is represented as
a two-layer fully-connect neural network having a hidden layer of dimension 200 and ending with
a sigmoid activation that outputs the probability that the agent should move left. We remove the
implementations’s preprocessing step and increase the batch size to 100.

Second, in an alternative approach we utilize a PyTorch example,

https://github.com/pytorch/examples/blob/master/reinforcement_learning/
reinforce.py,

and replace the policy architecture. The example’s default architecture is replaced with a simple
convolutional neural network used in PyTorch’s DQN tutorial. The architecture has three convolution
layers each followed by batch normalization before a fully connect layer. The output of the network
is a softmax returning the probability of taking one of three actions.

For each approach, the agents are trained overnight for ~ 200, 000 episodes. The first approach
(fc_train.py) uses a CPU on a laptop computer and the second approach (cnn_train.py) is
trained using a single GPU on a workstation.

Stable Baselines3. We next explore implementations of proximal policy optimization, advantage
actor critic, and Q-learning from

https://github.com/DLR-RM/stable-baselines3

After trying the algorithms’ default training hyperparameters, we instead use the ones suggested for
Atari games. The primary difference is that we do not simultaneously run multiple environments


http://karpathy.github.io/2016/05/31/rl/
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
https://github.com/DLR-RM/stable-baselines3

Figure 3: Collection of the best trajectories generated by agent trained with stochastic policy gradient. The
accumulated rewards for each trajectory from left from left to right are: 215, 218, 244, 230.

during training. Our environment setup is the same above for stochastic policy gradient. Each of the
Stable Baselines3 algorithms utilizes the default PyTorch convolution neural network to represent
features used by the policy and/or value function. This network architecture is uses two convolution
layers followed by ReLLU activations before a fully connected layer.

We train each of these algorithms ({ppo,a2c,dqn}.ipynb) overnight on a laptop computer.

MuZero. Lastly, we utilize an open-source implementation of MuZero
https://github.com/werner-duvaud/muzero-general

to train a policy in a two-player environment. This approach trains the agent using self play and
simultaneously learns a policy, value-function approximator that predicts rewards, and game dynamics.
Training is made more efficient by utilizing a replay buffer than enables the current models to learn
from previously collected experience. Our interface to MuZero is available in: muzero_achtung. py.

We modified our environment’s stepping dynamics such that each player selects an action using
the current state, but without knowing the other player’s new action. This modification enables the
environment to be utilized in a self-play manner while maintaining correct game play behavior. (This
stepping scheme is analogous to playing tic-tac-toe or chess where each player simultaneously takes
their action before knowing the other players’).

We successfully stepped through our game with the MuZero test interface and attempted training.
However, the training cost blows up and eventually returns NaNs so we abandoned this approach.

3 Results and Analysis

In section we present the results from our experiments compared to a random uniform policy baseline
(random_baseline.py). All policies are evalutated over 100 episodes. The random policy achieves
an average reward of ~ 78 with a standard deviation of ~ 44.

Stochastic policy gradient. The fully-connected stochastic policy gradient approach achieves an
average reward of ~ 76 with a standard deviation of ~ 45. In comparison, the convolutional neural
network stochastic policy gradient approach achieves an average reward of ~ 81 with a standard
deviation of ~ 52. These results are collected in Table [lland we show a collection of the best results
generated by the convolutional neural network policy in Fig. [3]

reward random FC CNN

avg. 78 77 81
std. 44 45 52

Table 1: Comparison of rewards between random actions and policy trained with stochastic gradient descent

The variance in the rewards generated by the trained policies is very high. As a result, the average
reward generated by the policies varies significantly depending on the random seeds used. Ultimately,
we find that the policies trained with stochastic policy gradient have not improved beyond the random
baseline.


https://github.com/werner-duvaud/muzero-general

Stable Baselines3. The results from the Stable Baselines3 algorithms are poor compared to the
random baseline as well and are summarized in Table 21

reward random PPO A2C DQN

avg. 78 68 51 37
std. 44 31 16 4

Table 2: Comparison of rewards between random actions and policy trained with Stable Baselines3 algorithms.

Similarly, we find that the policies trained with the Stable Baselines3 algorithms have not improved
beyond the random baseline. We do note that it appears that the DQN algorithm has some bug since
it always returns the same action both during evaluation before and after training. It’s much worse
than random because it always goes straight!

Analysis. We found it very discouraging that none of the open-source algorithms produced good
policies. However, we learned a significant amount about using deep learning for reinforcement
learning, recognize that it is a generally difficult problem, and now suggest a number of improvements
to make this project successful in future work.

First, we should have performed extensive hyperparameter tuning. While we used reasonable values,
and in the case of the Stable Baselines3 algorithms utilized values that should work for Atari games,
based on the recommendations from the community it seems that good performance is highly
dependent on tuning for a particular problem. Building a framework for automated testing of many
combinations is key and something that we would do in the future.

Second, we originally used the game environment we designed for training. After reading more tuto-
rials online we realized that practical performance on Atari games seems to require the modifications
we make for our training environment. This point reinforced the need for building a good dataset for
training. We made these improvements at a very late stage and as a result were only able to run each
of the algorithms overnight once.

Next, we performed many of the experiments on CPUs. Only in the last week did I install CUDA and
then try training GPUs with PyTorch. In the future, I would leverage this powerful library to train
policies faster and with more flexibility from the beginning of the project.

Finally, we find that most of the open-source reinforcement-learning agents online for playing Atari
are the simpler environments such as Pong or Breakout that are inherently reactionary games. In
contrast, Achtung Die Kurve! requires both reaction (e.g., don’t collide with a wall) and longer-term
planning (e.g., don’t get trapped within your own circle). To learn this type of planning likely requires
a different type of parameterized policy. In future work, we would utilize LSTM networks in order to
reason about a planning horizon.

4 Conclusion

In summary, we created a reinforcement-learning environment for the computer game Achtung Die
Kurve! and explored a number of open-source algorithms for training an agent to play this game.
Ultimately, we ran out of time to successfully train policies that can consistently outperform our
random action baseline. Finally, we conclude with future improvements for this project.

My ultimate takeaway from this project is that going in I didn’t understand how to structure a deep
learning project in practice. With this project over—largely without success—I have a much better
understanding of what I should focus on (e.g., I spend too much time tweaking the environment and
not enought time testing hyperparameters), the infrastructure I should build (e.g., I should have build
functions to do more live plotting and automate hyperparameter testing), and how to troubleshoot
models (e.g., I would have plotted more outputs and tested algorithms on really simple environments
first) in order to be successful in the future.



5 Team and Contributions

For this project, I worked with Lawrence Peirson. He is not taking this course, but is taking Decision
Making Under Uncertainty (AA 228) and we are sharing this project between courses.

Essentially, I got the game environment working and then we each used it to perform separate
experiments. We each wrote our own reports. Additionally, we discussed various approaches
and improvements. Because of COVID and the two of us being in different time zones we didn’t
collaborate as much as we had initially planned.

T. Howell: wrote this entire report (and: entire proposal, entire milestone); made the video
presentation, images, and animations; performed the majority of the game and training en-
vironment design (achtung.py); did my own experiments with stochastic policy gradient
(fc_train.py, cnn_train.py), advantage actor critic, Q-learning ({ppo,a2c,dqn}.ipynb), and
MuZero (muzero_acthung.py).

L. Peirson: wrote entirely separate reports for AA228; performed a separate stochastic policy gradient
experiments with the game instead of training environment (see older commits for train.py) using
a ResNet and trained using GPU’s on Stanford’s Sherlock cluster.

6 Appendix

stochastic policy gradient with fully-connect paolicy

300 ~

250 1

[

(=}

(=]
1

=

w

o
1

episode reward

100 +

50 A

T T T
0 500 1000 1500 2000
epoch (100 episodes)

Figure 4: Rewards during training for the episode reward (blue) and running average (red).



stochastic policy gradient with cnn policy

400 +

350 4

|t %] %] (78]

un [=] w [=)

o [=] [=] (=]
1 I 1 1

episode reward

T T T T
50000 100000 150000 200000
epoch (100 episodes)

o 4

Figure 5: Rewards during training for the episode reward (blue). Note: I forgot to save the running average
(red).



References

[1]
(2]

(3]

Greg Brockman et al. “OpenAl Gym”. In: arXiv preprint arXiv:1606.01540 (2016).
Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a learned
model”. In: arXiv preprint arXiv:1911.08265 (2019).

David Silver et al. “Mastering chess and shogi by self-play with a general reinforcement learning
algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018.

Gerald Tesauro. “Temporal difference learning and TD-Gammon”. In: Communications of the
ACM 38.3 (1995), pp. 58-68.

Wikipedia contributors. Achtung, die Kurve! — Wikipedia, The Free Encyclopedia. [Online;
accessed 30-September-2020]. 2020. URL: https://en.wikipedia.org/w/index.php?
title=Achtung, die_Kurve!&o01ldid=976491301.


https://en.wikipedia.org/w/index.php?title=Achtung,_die_Kurve!&oldid=976491301
https://en.wikipedia.org/w/index.php?title=Achtung,_die_Kurve!&oldid=976491301

	Introduction
	Approach
	Environment
	Reinforcement learning

	Results and Analysis
	Conclusion
	Team and Contributions
	Appendix

