Fine-tuning BERT On Fine Foods

Mengmeng Ji
Department of East Asian Languages and Cultures
Stanford University
mmj710@stanford.edu

1 Introduction

In the field of Natural Language Processing (NLP), text classification is a classic problem. Previous
work has shown that pretrained models are beneficial in classification tasks and other NLP problems.
Especially Bidirectional Encoder Representations from Transformers (BERT), a multi-layer bidirec-
tional Transformer which is trained on plain text or word prediction and next sentence prediction
task. BERT have come to dominate the NLP landscape since their introduction by (Devlin et al.
2018). This largely replaced word embedding approaches such as word2vec (Mikolov et al. 2013)
and Glove(Pennington, Socher, and Manning|2014)). The transformer architecture that BERT uses
was first introduced in (Vaswani et al.[2017) and has gained popularity on a multitude of tasks as it
can train faster than previous RNN approaches such as (Liu, Qiu, and Huang 2016).

Although BERT has achieved great performance in many NLP tasks, its potential in text classification
has not been fully explored. "How to Fine-Tune BERT for Text Classification" (Sun et al. 2019)
provides effective methods for fine-tuning BERT on the text classification task. Fine-tuning BERT
for different NLP tasks is a valuable skill for deep-learning practitioners but can present a daunting
challenge for novices in the field. This project will reproduce the approach used in the (Sun et al.
2019) paper and extend it to the Amazon Fine Food Reviews text classification dataset. This project
will apply these fine-tuning methods on the Amazon Fine Food Review dataset, which was not
included in the original paper. In this way, I will confirm whether the methods from the paper have
broader applicability across different datasets, and particularly if they can work on a new, more
challenging dataset.

2 Dataset and Features

The Amazon Fine Food Reviews dataset is available through https://www.kaggle.com/snap/
amazon-fine-food-reviews. The dataset contains 568,454 reviews of food written between 1999
and 2012. Each review contains both text and a score (1 to 5) for the product it reviews. Additional
metainfo such as review “usefulness” (as judged by other users), timestamp, and summary are
available but will not be used in the project.

The dataset predominantly contains positive 5 star reviews and a smaller proportion of 1-4 star
reviews as is shown by the histogram in figure[I] Interestingly, there are more 1 star reviews than
there are 2 or 3 star reviews.

As this is a relatively large dataset (500k+ reviews), it gives us a lot of flexibility to try a variety of
model sizes and approaches. In particular it makes it possible to to perform in-task pretraining as has
been suggested in (Sun et al.[2019).

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews

Figure 1: Distribution of labels in the Fine Foods dataset

Histogram of scores

350000 -

300000 -

250000 1

200000 -

examples

150000 +

No

100000 +

50000

E

0
1 2 3
Score (i.e. stars)

IS
v

2.1 Creating the Fine-tuning Dataset

The 568,454 examples are split into a training set of 508,454 reviews, a development set with 40,000
samples, and test set with 20,000 samples.

The splits are then preprocessed independently (to prevent cross-contamination) following the
classification example from the official BERT repository

Inputs to a BERT model are expected to have a fixed structure of [CLS, Text_a, SEP, Text_b]. In
this classification example Text_a is the text of the review that we want to classify (first 128 tokens),
Text_b will be left blank. Finally, the labels for each example (review) is the corresponding score (i.e.
how many stars).

For the baseline model I performed the following pre-processing on each example: 1) lowercase
the text, 2) tokenize the text, 3) break the word into WordPieces, 4) map the words to indexes using
a vocab file that BERT provides, 5) add special "CLS" and "SEP" tokens, 6) append "index" and
"segment" tokens to each input. Most of this functionality is readily accessible through tensorflow-
bert. Furthermore the vocabulary file is part of the BERT-mini tensorflow hub module.

For the final model, instead of simply using the first 128 tokens of the review as text_a, I use the
head+tail truncation methods mentioned in (Sun et al.[2019). This involves taking the first 64 and
the last 64 tokens of the review. If the review is shorter than 128 tokens the entire text is used, if the
review is longer, I throw out the middle tokens and make sure to keep the first and final (head and
tail) 64 tokens. The motivation for this is quite intuitive as the start and end tokens of review tend to
contain the most valuable information (Sun et al.[2019).

Finally, I write the datasets to the disk as a tfrecord file. Because the Fine Food dataset is relatively
large this process takes approximately 20 minutes. By writing it to disk directly we also ensure that
the train/dev/test splits is fixed, thus preventing cross-contamination.

2.2 Creating the In-task Pretraining Dataset

The BERT models provided on tfhub have been pretrained on a large corpus of Wikipedia articles.
Therefore there is a mismatch between the training set (Wikipedia) and the target set (reviews). In
(Sun et al. 2019 it is suggested to take the BERT model pretrained on Wikipedia, and adapt it to the
on-task distribution by performing further pretraining with the on-task text. In this way we can hope
to make the model more domain-specific and improve generalization.

Pretraining BERT involves two separate tasks: Mask Language Modeling (MLM) and Next Sentence
Prediction (NSP) Devlin et al.|2018| These two tasks require us to preprocess the reviews differently
than when doing fine-tuning. To create the in-task pretraining dataset I kept the same train/dev/test
split of the Amazon Fine Foods Reviews dataset as the baseline model.

Much of the functionality to preprocess the data is available through tensorflow-bert, however the
reviews still need to be converted into the format that the BERT package expects. For this I do the
following work: 1) write the raw Reviews.csv data into files with one sentence per line and a blank
line between different documents (i.e. reviews). Next I use the tokenizer (and vocabulary) that comes
with the pretrained tthub model. Finally, I provide the list of input files and the tokenizer to the

'See https://github.com/google-research/bert/blob/master/predicting_movie_reviews_
with_bert_on_tf_hub.ipynb/

https://github.com/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb/
https://github.com/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb/

tensorflow-bert library.]

The resulting dataset is then written to disk as a single tfrecord file consisting of around 800k
examples. Each examples has a maximum sequence length of 256, which is double the 128 sequence
length used in the fine-tuning task. This is required for the next sentence prediction task where the
goal is to determine whether text_a and text_b come from the same or different reviews (where each
of the texts may have up to 128 tokens). For the masked language modelling task 15% of the tokens
(40 tokens) are masked out. In this task the model must correctly "fill in the gaps" i.e. determine
what token was there before masking.

3 Methodology

3.1 Baseline model

While the final model will use the fine-tuning tricks identified in (Sun et al.|[2019), the milestone
approach establishes what performance can be achieved with minimal time spent tuning hyperparam-
eters. This will provide a the baseline against which the final model will be compared, both in terms
of development time and performance. Therefore, for better comparison, instead of using LSTM, I
use a pretrained version of BERT as baseline model.

Additionally, to keep the computational cost reasonable I work with a smaller pretrained version of
BERT referred to as BERT-mini. This pretrained model is publicly available through tensorflow
hutfl This version of BERT contains 4 encoder blocks with a hidden size of 256. The multi-head
attention uses 4 attention heads. For contrast, BERT-base contains 12 layers with a hidden size of
768, and 12 attention heads. The availability of different sizes of pretrained models on tensorflow-hub
makes it relatively easy to switch to a larger model later in the development process if higher accuracy
is desired.

However in this project the focus is primarily on replicating and evaluating the fine-tuning tricks
identified in (Sun et al. 2019)). Specifically, whether they are applicable to the Fine Foods dataset.
Working with a smaller model makes it easier and faster to iterate and run experiments.

To build the baseline model, I take the pretrained weights from BERT mini and add a single linear
classifier layer on top. To reduce overfitting, I also use a dropout layer before the output layer. To
train the model, I use mini batches of batch size 64. As the starting point of tuning hyperparameters,
reasonable defaults are provided in the official github classification exampleﬂ With these defaults,
the model trains well. The loss and accuracy on both the training and dev set are summarized in table
[1] Despite training the model for a single epoch, there is evidence of some slight overfitting occurring
such that performance on the train set is better than on the dev set. This gap could be reduced in the
final model by increasing regularization, such as increasing the dropout rate before the classification
layer.

3.2 Experiments on Fine Tuning BERT Model

3.2.1 In-task Pretraining Model

As suggested in the last section, first, I pretrain in-task dataset with the BERT model mini. The
pretraining task typically contain 2 segments of text i.e. 2* 128, so the maximum sequence length
is set to 256. The maximum amount of masked tokens per example in MLM task is 40, which
conventionally is about 15% of the length of sequence.

Next, I set up pretrained BERT model for masked language modelling and next sentence prediction
(MLM + NSP) task. The final loss is simply the sum of the MLM loss and NSP loss, therefore the
model simultaneously learns to do well on both tasks. The cross-entropy loss and accuracy of MLM
and NSP tasks in in-task pretraining run for a single epoch can be seen in figurd3] respectively.

The NSP task appears to be relatively easy on the reviews dataset. This is likely because the reviews
typically mention the food that they are reviewing, so it is easy to detect the mismatch between
the first and second sequence. Similarly, the language used in the reviews is less sophisticated as

>The procedure of this step is similar to the creating dataset methods in BERT package, seehttps://
github.com/google-research/bert/blob/master/create_pretraining_data.py

*https://tfhub. dev/google/small_bert/bert_uncased_L-4_H-256_A-4/1/

*https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/
bert_finetuning_with_cloud_tpus.ipynb

https://github.com/google-research/bert/blob/master/create_pretraining_data.py
https://github.com/google-research/bert/blob/master/create_pretraining_data.py
https://tfhub.dev/google/small_bert/bert_uncased_L-4_H-256_A-4/1/
https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb
https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

compared to the Wikipedia articles on which BERT was initially pretrained. As such the model is
able to achieve a >80% MLM accuracy in a single epoch.

For the subsequent fine-tuning run, the model weights are initialized from in-task pretraining run. To
train the model, I again use mini batches of batch size 64, and set an initial learning rate of 0.00005.
The fine-tuned classification accuracy on both training and dev sets are very similar to the baseline
model.

3.2.2 Head+Tail Truncation Model

For this experiment, I use the head+tail truncation methods mentioned in (Sun et al.[2019) on BERT
mini, choosing the first 64 and the last 64 tokens of the review.The start and end tokens of reviews
tend to contains the most information.

The model weights are initialized from Google tthub checkpoint. I add a single linear classifier layer
on top. To train the model, I use mini batches of batch size 64, and set learning rate as 0.00005. To
reduce the chance of overfitting, I train the model for one epoch. The performance of this model, as
figure 2] and [T] shows, is slightly better than previous experiments.

3.2.3 Head+Tail on BERT Small Model

For this experiment, I implement the head+tail truncation method on a bigger model, BERT small.
The BERT small model contains 4 layers with a hidden size of 512, and 8 attention heads. In contrast,
my baseline model BERT mini contains 4 layers with a hidden size of 256, and 4 attention heads.
The model weights are initialized from Google tthub checkpoint. I add a single linear classifier layer
on top. I use mini batches of batch size 64, and set learning rate as 0.00005. To reduce the chance of
overfitting, I train the model for one epoch. As figure 2] and[T|show, the fine tuned BERT small model
gives the best performance.

Figure 2: Summary of fine-tuning training runs (1 epoch)

Cross-entropy loss (training) Cumulative training accuracy [%] le=5 Learning rate
80 5]

—— same LR for all runs

169 |
1.4 1
1.24 70
1.0

0.84 A
60 -

0.6 -

baseline
—— with in-task pretraining

0.4 === with 64 start and end tokens
----- larger model (BERT small) 04
T T T T T 50 T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
global step global step global step

Figure 3: Summary of in-task pretraining run (1 epoch)

Masked LM loss Next sentence loss Masked LM accuracy [%] Next sentence accuracy [%]
2.50 A 0.6 4
90 1 90 +
2.25 A
0.5 1
2.00 A 80 4 0
1.75 4 0.4 4
1.50 A 701 704
0.3 1
1.25 4
1.004 02 60 60 |
0.75 A
T T : T T T 50 L+ T T 50 1+ T T
0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
global step global step global step global step

model train loss | dev loss | train accuracy | dev accuracy
baseline (BERT mini) 0.5706 0.6089 0.787 0.771
with in task pretraining 0.5803 0.6187 0.782 0.764
with 64 first and final tokens | 0.5505 0.5803 0.795 0.789
larger model (BERT small) 0.4668 0.5328 0.830 0.804

Table 1: Summary of performance on the training and development sets for all models

precision recall fl-score | support
1 star review | 0.75/0.79 | 0.70/0.73 | 0.72/0.76 2010
2 star review | 0.29/0.42 | 0.49/0.58 | 0.36/0.49 643
3 star review | 0.47/0.55 | 0.49/0.57 | 0.48/0.56 1442
4 star review | 0.31/0.41 | 0.57/0.68 | 0.40/0.51 1513
5 star review | 0.95/0.96 | 0.84/0.86 | 0.90/0.91 | 14392
accuracy 0.77/0.80 | 20000
macro avg 0.55/0.63 | 0.62/0.69 | 0.57/0.65 | 20000
weighted avg | 0.83/0.84 | 0.77/0.80 | 0.79/0.82 | 20000

Table 2: Test set sklearn classification report for different review categories. Comparing: baseline /
final model.

4 Results And Insights

Table 2| shows the result of both baseline model and the final model (final model result written in
bold).

For baseline model result, as shown in table 2] we see that the F1 score is the highest on the over-
represented 5-star review class, while it is significantly lagging for the 2-4 star review classes.
Interestingly, the 1-star review category also achieves a relatively high F1 score. This suggests that
reviews which will give exactly 1-star are easy to identify.

The biggest improvement in classification performance appears in 2-4 star reviews, which are under-
represented categories. For instance, the 3 star review category sees a 8 point improvement in F1
score, while the 5 star review category’s F1 score increases by only 1 point. Some of this improvement
comes from using the head+tail approach suggested in Sun et al.[2019} but most of the benefits should
be attributed to using a bigger model. The overall performance gain is encouraging, suggesting
there may be further benefit to increasing the model size even more, or using a deeper model, such
as BERT-medium (same hidden size as BERT small, but 8 layers instead of 4). This is left as an
experiment for future work.

In contrast, in-task pretraining showed only limited benefit, with no significant improvement in
overall dev set accuracy. To put things into perspective, running in-task pretraining for 1 epoch
is as expensive as fine-tuning the model on the same dataset for 1 epoch, thus when using in-task
pretraining, the total training time effectively doubles. When doubling the model hidden size from
BERT mini to small, the total training time also doubled, but the benefits were much more significant.
In conclusion, while some of the tricks of fine tuning BERT from Sun et al. [2019| are applicable to
new text classification datasets, the most reliable way to improve performance still appears to be
using bigger and deeper models.

References

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805. arXiv: 1810 .04805. URL: http://arxiv.org/
abs/1810.04805.

Liu, Pengfei, Xipeng Qiu, and Xuanjing Huang (2016). Recurrent Neural Network for Text Classifi-
cation with Multi-Task Learning. arXiv:|1605.05101 [cs.CL].

Mikolov, Tomas et al. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv:
1301.3781 [cs.CL].

Pennington, Jeffrey, Richard Socher, and Christopher Manning (Oct. 2014). “GloVe: Global Vectors
for Word Representation”. In: Proceedings of the 2014 Conference on Empirical Methods in

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1605.05101
https://arxiv.org/abs/1301.3781

Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,
pp. 1532-1543. D01:/10.3115/v1/D14-1162. URL: https://www.aclweb.org/anthology/
D14-1162.

Sun, Chi et al. (2019). “How to Fine-Tune BERT for Text Classification?” In: CoRR abs/1905.05583.
arXiv:1905.05583. URL: http://arxiv.org/abs/1905.05583,

Vaswani, Ashish et al. (2017). Attention Is All You Need. arXiv:|1706.03762 [cs.CL].

https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1706.03762

	Introduction
	Dataset and Features
	Creating the Fine-tuning Dataset
	Creating the In-task Pretraining Dataset

	 Methodology
	Baseline model
	Experiments on Fine Tuning BERT Model
	In-task Pretraining Model
	Head+Tail Truncation Model
	Head+Tail on BERT Small Model

	Results And Insights

