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Abstract

Traffic Light Recognition is a critical task in autonomous and assisted driving,
but the literature on adversarial attacks against these models is woefully lacking.
We adopt a two-stage traffic light recognition model with two CNNs working to
localize and classify traffic lights. We first evaluate adversarial attacks against the
classification model. We then attempt to fool the localization model by perturbing a
small region of the original input region. Our adversarial attacks were unsuccesful
in attacking either model, a major contrast to the one other paper on adversarial
attacks against traffic light recognition models. We suggest possible reasons for
our contrasting results, and we offer suggestions for additional work to be to assess
the robustness of traffic light recognition models.

1 Problem Description

Detection of the color of traffic lights is a very important task in autonomous driving, as well as in
assisted driving tools. Convolutional neural networks (CNNs) have been shown to be very effective
in many image classification tasks, including traffic light color detection [l1]. However, CNNs
are very susceptible to adversarial attacks (i.e. small perturbations to the input images that can
be imperceptible to the human eye that can cause a neural network to misclassify the image) [2]].
The consequences of an adversarial attack that causes a light detection algorithm in an autonomous
vehicle to misclassify a red light as a green light could potentially be devastating for passengers and
pedestrians [[1]]. Given the importance of traffic light color detection, we wanted to further investigate
which aspects of traffic light detection models are susceptible to attack.
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2 Related work

Some existing research has suggested that adversarial attacks are effective against traffic light color
classification CNNss; furthermore, traditional adversarial attack defenses, such as adversarial training
and defensive distillation, have shown to be ineffective at reducing the success rate of the attack [1].

Although some research on the effectiveness of adversarial attacks and defenses on the classification
of traffic signs has been done [3]], there has been less research looking at traffic lights. A 2020
study from Wan et al. on the effectiveness of the spatial, one-pixel, Carlini & Wagner, and boundary
attacks against a deep convolutional network trained on a CARLA traffic light dataset found that
the classification model in traffic light recognition was susceptible to both white box and black box
attacks [1]. A limitation to this study is the fact that the data was hand-collected from the CARLA
traffic simulator and consisted of only 477 manually localized/cropped images.

One aspect of Wan and others’ research that we seek to explore further is which aspects of the
recognition model are susceptible to adversarial attacks. Wan et al. only examines the classification
model, and does not consider the localization model at all; however, localization — the process of
finding a specific object, like a traffic light, in an image containing many different objects — is a
critical element of traffic light recognition systems. Wan et al. only use manually cropped images
that just include the traffic light [1]. We also orient our attacks around minimizing the amount of
perturbation to the images, both in terms number of pixels edited and intensity of changes to those
pixels; this draws upon a large literature in adversarial attacks that emphasize the importance of
minimizing the visibility of the attack, especially since several defense algorithms work to recognize
perturbations in the image [2}, 4].

3 Dataset

We are using a dataset collected from CARLA, a driving simulator. The dataset was
manually collected by researchers at Affinis Labs. The dataset consists of 1800 im-
ages of red and green lights. The split is roughly even between red and green lights.
We did notice, however, that some photos that appeared "Yellow" to us were annotated
by the simulator as "Green." The dataset can be found at this public Google Drive link
https://drive.google.com/drive/folders/1_RppuNf7LSBJ1E2v9d_3iulGkeWEs7Rn?usp.
We also wused a dataset of manually localized traffic light images col-
lected by Dr. Kyle Guan at Bell Labs. That dataset can be accessed at
https://github.com/kcg2015/traffic_light_detection_classification/tree/master/
traffic_light_classification/training_images.
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Figure 1: An example image from our dataset



4 Model

We use an existing code base for traffic light localization and classification, which has been
trained on the COCO dataset (for localization) and a separate dataset of 1,400 traffic light
images (for classification). The GitHub link for the reference code base can be found at:
https://github.com/kcg2015/traffic_light_detection_classification.

Our model, like many traffic light detection models, has two stages that run synchronously. In the first
stage, our localization model — based on the SSD framework trained on the COCO dataset — takes in
a 900x1600 image from the Carla Autonomous Vehicle Simulator dataset. It then attempts to localize
the traffic in that image. If it finds a traffic light in the image with high enough confidence, we take
that localized region and reshape it into a 32232 image. We then pass this 32232 to our classification
model, which classifies the traffic light as either green, red, or yellow.

Pre-trained weights are loaded from the code base. The classification convolutional neural network
model architecture can be found below in Figure 2.

Layer (type) Output Shape Param #
conv2d_4 (Conv2D) (None, 32, 32, 16) 448
activation 6 (Activation) (None, 32, 32, 16) 0
conv2d_5 (Conv2D) (None, 30, 30, 16) 2320
activation 7 (Activation) (None, 30, 30, 16) 0
conv2d_6 (Conv2D) (None, 28, 28, 16) 2320
activation 8 (Activation) (None, 28, 28, 16) 0
max_pooling2d 2 (MaxPooling2 (None, 14, 14, 16) 0
flatten 2 (Flatten) (None, 3136) 0
dense_3 (Dense) (None, 128) 401536
activation 9 (Activation) (None, 128) 0
dense_4 (Dense) (None, 3) 387
activation 10 (Activation) (None, 3) 0

Total params: 407,011
Trainable params: 407,011
Non-trainable params: 0

Figure 2: Classifcation Convolutional Neural Network Model Architecture

5 Experiment Description

The only existing work we found on adversarial attacks on Traffic Light Detection models only
examined the classification aspect of traffic light detection. They took manually localized images of
traffic lights, trained a model to classify the color of the traffic light, and then ran adversarial attacks
against that model. They found that numerous white-box adversarial attacks could be extremely
effective against the classification model — some reducing the model’s accuracy from 100% to 0%.

We were struck by this finding, and our first experiment was to replicate their finding on our
own model. We took manually localized traffic light images, collected by Dr. Kyle Guan, and
evaluated the accuracy of our classification model on these images; we then applied FGSM and
Carlini Wagner distortions to these images and evaluated the accuracy of our model on the perturbed
images. Additionally, we attempted adversarial attacks on our classification model running with our
localization model. We ran our two-step model with localization on our CARLA dataset to get our
baseline accuracy. Then, we ran our two-step model again; however, before we passed the cropped,
localized image from the localization model to the classification model, we applied FGSM and Carlini



& Wagner attacks to the localized image, and then passed these perturbed images to our classification
model.

For our second experiment, we wanted to move away from just attacking the simpler classification
model and instead consider how one could attack the broader two-stage, localization-classification
model. Instead of simply perturbing the entire 900x 1600 pixel image given to the localization model,
we only perturb the region that the localization model outputs. Our goal, consistent with the goal of
adversarial attacks in general, is to minimize the perturbation of the input image while still yielding
successful attacks. By perturbing only the region of the image that needs to be localized, we can
avoid perturbing the entire image while hopefully still yielding an effective attack. In this experiment,
we run the localization model, which returns the bounding coordinates of the localized region. We
then apply attacks to this region, and replace the region in our original input image with our perturbed
image. We then run the localization model yet again on this partially perturbed 900x1600 image;
if the localization model outputs a different set of coordinates, we consider that a successful attack.
We also consider true classification accuracy (whether or not the model outputs the correct color)
as a measure of attack success. We choose to use the output of the localization model as our region
to perturb as opposed to the true bounding region of the traffic light for two reasons: it allows us to
assess the effectiveness of the attack on every single test image and because our localization model is
taken from a public repository and therefore could be used by anyone — thereby better replicating
how an adversarial attack in the real world might occur.

6 Results

6.1 Classification Model Attacks

We found drastically different results than those of Wan Et Al. While they found that adversarial
attacks could be effective on the classifcation model, we found that both FGSM and Carlini & Wagner
attacks were entirely ineffective. We created adversarial examples from the manually localized
images as well as the model localized images. In both cases, we were entirely unable to fool the
model; the accuracy on the adversarial examples was the exact same as the accuracy on the original
examples.

Image Type Attack Accuracy Accuracy with
without Attack Attack
Manually FGSM 99% 99%
Localized
Manually C&W 99% 99%
Localized
Model Localized FGSM 73% T3%
Model Localized C&W 73% T3%

6.2 Modifying Original Image

Similarly, our attempts to fool the model by perturbing the region the model-localized region in the
original input also failed to generate any successful attacks. Our localization model and classification
model outputted the same exact results on unperturbed and partially-perturbed photos.

7 Discussion

7.1 Issues

In examining why our experiments failed to yield the same results as Wan Et Al. we came to two
conclusions. Firstly, it’s possible there is an issue with the Adversarial Robustness Toolbox in
properly accessing the gradients of our Keras Model. We were unable to notice differences between
our perturbed images and our original images (Appendix Figure 3). Admittedly, this is hard to do
for our photos since they don’t have many pixels, and they are generally dominated by two colors
(black + traffic light color). However, we also applied boundary attacks, which only require final
class prediction, to our images, and we were similarly unable to fool the model.



Secondly, our attempt to fool the localization model by only perturbing one region did not work; in
hindsight, this is because we need to use the gradients of the localization model as opposed to the
gradients of the classification model. Unfortunately, our frozen tensorflow graph, used to load in the
localization model, was not compatible with the ART toolbox, and thus we were unable to develop
adversarial attacks against it.

7.2 Takeaways and Suggestions

While we consider our results somewhat inconclusive, we hope that other researchers will be inspired
to replicate these results yet again — given the discrepancy between our findings and others’ findings.
Furthermore, we encourage other researchers to consider the localization model, which — to date —
has not yet been explored as a potential vulernability in traffic light recognition models. We believe
that our idea of only perturbing the region that the localization model will output still stands as a
viable way of generating successful attacks while minimzing the perturbation to the image space. We
suggest that these perturbations be generated with respect to the loss from the localization model —
not from the classification model.

8 Contributions

Eunji Lee and Connor Toups both worked on developing the baseline models and developing the
adversarial attacks, with Eunji dealing more with the adversarial attacks and Connor dealing more with
the baseline model. Spencer Paul experimented with defense algorithms. All members contributed
equally to developing our project idea, analyzing the results, and writing the final report.
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9 Appendix
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(a) Unperturbed localized image (b) Perturbed (FGSM) localized image

Figure 3: Example of perturbation that seemed to have minimal effect
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