HMM-Viterbi Based Decoders vs Deep Neural
Architectures (Speech Recognition)

Erol Aygar*
Department of Computer Science
Stanford University
aygar@stanford.edu

Abstract

ASR technology is undergoing architectural changes recently. Hidden Markov
Models (HMMs) are a mainstream statistical graphical representation for modeling
vector sequences in the temporal domain [Koller]. Deep Neural Networks (DNNs)
with time sequence capabilities (RNN), and a class of new recognizers (E2E NNS),
as well as hybrid models, offer alternatives for current design decisions [Nassif]
[Liu]. Novel learning and representation methods enabled better language and
acoustic models. Large datasets, open-source toolkits, and computational infras-
tructures are publicly available. Accuracy of the state-of-the-art decoders improved
from 16 to 6 percent accuracy in large vocabulary corpus in the last decade [cs224s].
This paper proposes a study on comparing HMM based recognizers with Deep
Learning based methods.

1 Introduction

1.1 Learning Methods
The primary goal of learning in speech is to build a model to infer the text sequences from a sequence

of feature vectors. The features are used both in training and recognition processes. The following
figure shows inputs and outputs of training and recognition processes.

TRAINING Tergets
Estimated
Speech Front End Features WLP Phone Labels

RECOGNITION

FrontEn e Estimated

ront En

Speech Features Phone
Probabilities

Viterbi
Alignment

(
Word
Sequence

Figurel-Training and recognition processes [Renals].

*https://www.linkedin.com/in/erolaygar/

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

1.2 Conventional Methods

CMU-Sphinx is an example of open source HMM-based ASR toolkits. The high level design of its
decoding process is laid out on the following figure [Lamere]. The goal is to study a Deep Learning
alternative that will be comparable with this design. CMU-Sphinx framework has three main design
blocks: Frontend (end pointer, feature computations), Decoder (graph construction, state probability
computation, search), and Knowledgebase (dictionary/lexicon, language model, acoustic model).

I I Search | |Searcn | 77
control control rosults

Frontend Decoder| Knowledge base
—* Search Dicti:
Endpointer
; .
== = X x
Stat Language
Feature i |] pr::ahllny Graph model
computation computation i

—
Statistical Structural

parametors information [
model

Figure2-Architecture of the Sphinx-4 system [Lamere]. Red marks our focus.

Frontend takes in speech signals and generates feature vectors. The decoder block performs the
actual recognition. The graph construction module translates any type of standard language model
into an internal format. It constructs a Language HMM from the phonetic dictionary and structural
information from one or more sets of acoustic models (Gaussian mixture). The graph construction
module has two submodules. The first interprets the language model and converts it into an internal
grammar. LM can be in multiple forms (e.g., statistical N-grams, context-free grammars) Internal
grammar is then converted to a language HMM. Language HMM was then used by the search
module to determine the structure of the trellis to be searched. The search is performed by Viterbi or
Bushderby algorithms. In HMM-based decoders, search is performed through a trellis (a directed
acyclic graph or DAG which is the cross product of the language HMM and time). The state
probability computation module has access to the feature vectors (39 MFCC) and computes the state
output probabilities from features.

1.3 Motivation

The motivation of this project is to understand the conventional as well as the novel Deep Learning-
based ASR model architectures to have a baseline for future studies. Our goal is to implement a
Deep Learning Decoder and compare its performance with the existing ones based on training and
decoding accuracy.

2 Model Design

After completing the course modules and meeting with project mentoring TAs, instead of implement-
ing a network solution from scratch, we decided on RNN that use Long Short Term Memory (LSTM)
Cells as our sequence model architecture and DeepSpeech Framework as the started code for the
implementation. The framework uses a Connectionist Temporal Classification [CTC] loss function
[DeepSpeechM]. The framework implements a Recurrent Neural Network (RNN) that can be trained
to input speech spectrograms or audio files to generate transcriptions in text format and The code
lets the application programmer make changes to its code and adjust the hyperparameters for the
experiments as well as let use external language models to measure and improve the accuracy of the
predictions. It supports beam search as a decoding algorithm by default with possible support for
external alternatives. The input audio files are converted into a power spectrum of signals during a
feature extraction preprocessing step. They are also called features in short or Mel-frequency cep-
stral coefficients (MFCC’s), which are also commonly used input formats for HMM-based acoustic
models.

3 Model Explanation

The model can be summarized as following formulation [DeepSpeech]. Let single utterance be
denoted as x and the label y be sampled from a training set.

S = {1'(1); y(l)a $(2),y(2), }

Let utterances, (¥ be time-series of length T where every time-slice is a vector of audio features,

:c,(f) where t = 1,..., ") MFCC’s are used as the features; so xt?; denotes the p-th MFCC feature in
the audio frame at time ¢. The goal of the RNN is to convert an input sequence x into a sequence
of character probabilities for the transcription y, with § ¢t = Pe;|x , where for the alphabet ¢; €
{a, b, ¢, ..., 7, space, apostrophe, blank} The RNN model has 5 layers of hidden units. For an input
x, the hidden units at layer [are denoted hl and hl is the input layer. The first three layers are not
recurrent layers. The first layer, at each time ¢ , the output depends on the MFCC frame x; along with
the context of C' frames on each side. The remaining non-recurrent layers operate on independent
data for each time step. Thus, for each time ¢, the first 3 layers are computed by:

nd = g ORY +40)

where g(z) = min(max(0, z), 20) is a ReLu activation function and W) b(!) are the weight matrix
and bias parameters for layer [The fourth layer is a recurrent layer and includes a set of hidden units
with forward recurrence (/)

R = gw@h® 4 W(f)h,@l + @)

h{Y) is computed sequentially from ¢t = 1 to t = T for the -th utterance. The fifth layer is
non-recurrent and takes the forward units as inputs.

BB — g(W(5)h(f) + b(5))

The output layer is standard logits that correspond to the predicted character probabilities for each
time slice ¢ and character k in the alphabet:

) = yin = (WOR), + b

Where bff)denotes the k-th bias and (W(G)h§5)) i the k-th element of the matrix product. The CTC
loss £(9, y) is computed after a prediction for y; , is computed. The loss function uses the blank
symbol for transitions between characters. During training, the gradients £(g, y) with respect to the
network outputs are calculated based on the ground-truth character sequence y and the gradients with
respect to model parameters are applied by the back-propagation function.

Figure3-LSTM-RNN-CTC Model Architecture [DeepSpeech].
® ® ®©

.

A 1 r% 5 A
| [|
(3] ® (3]

Figure4-The RNN consists of an LSTM RNN that works “forward in time” [DeepSpeech].

-

4 Dataset and Features

The target datasets consist of four corpora in different characteristics. TIDigits, TIMIT, Switchboard,
and NOAA Corpus. The idea is to benefit from different features of each dataset, such as vocabulary
size, the structure of conversations, speaker gender, and accent variations. The following list explains
the corpora used.

Switchboard (Large) is a collection of spontaneous conversations among 543 speakers (302 males,
241 females) from every major dialect of American English. The corpus amount to 259 hours of
recorded speech, and about 3 million words of text. contains 2438 two-sided telephone conversations
stored in two-channel audio files averaging 6 minutes in length. Audio files are two channels, 8khs
each, NIST Sphere formatted files. Each audio file has a transcriptions text file that contains the word
alignments. The switchboard dataset with Gaussian Mixture Models has a benchmark WER of %25.2
as of 2015.

TIMIT (Mid Size) contains recordings of 630 speakers of eight major dialects of American English,
each reading ten phonetically rich sentences. The corpus includes 16kHz audio files for each utterance
and time-aligned word transcriptions.

NOAA [Small] is recordings and manually transcription of radio weather messages broadcast by the
National Oceanic and Atmospheric Administration (NOAA). The dataset included 185 total audio
files. The transcriptions and word alignments are done manually.

TIDigits (Tiny) There are 326 speakers (111 men, 114 women, 50 boys, and 51 girls) each pronouncing
77-digit sequences. Dataset is partitioned into test and training subsets by default.

5 Model Training

5.1 Data Preperation

We implemented python scripts to format the datasets into DeepSpeech’s expected format. Each
dataset is split into test, development and test sets. The data size is larger so we segmented into
subsets of each dataset for development and discovery purposes. Also, extracting data into wav files
and split them to utterances based on the time slices provided in the transcriptions. This phase was
the most time consuming phase of our experiments along with the computation time during training.

5.2 Parameters

Table 1 shows the inputs and hyperparameters that are used to tune the model and it’s capabilities.
Third column shows the list of values we came up with during the study and used to train the
LSTM-RNN-CTC model.

Parameter Description LSTM-RNN-CTC
n-hidden number of hidden layers 2048
early-stop early stop enabled True
es-min-delta limit used for early stopping 0.1

es-epoch n epocs without expected change on loss | 6

epochs number of epochs 200
dropout-rate dropout rate 0.2
learning-rate learning rate 0.00095
training-batch-size | training batch size 80
dev-batch-size development batch size 80
test-batch-size test batch size 40
alphabet-config alphabet file alphabet.timit
Im n-gram language model binary Im.bin

trie trie for language model Im.trie

Table 1 -Model inputs and hyperparameters

We ran 200 epochs on TIMIT dataset with the hyperparameters. Overfitting is observerd after 55-60
epocs. %37 WER observed on the development set. Figure shows the learning curve of the training
process.

200

120 \

Loss

1357 91113151719212325272931333537394143 45474951 53555750 616365 676971737577

epocs

FigureS - Learning Curve

6 Evaluation

6.1 Experiment Design

The experiment compares recognizers and report results based on their Accuracy (ACC: (N-D-S)/N),
Word Error Rate (WER: I + D + S), Speed, and Implementation complexity. The experiment will
train both recognizers with the four datasets mentioned in related the section above. We will segment
each corpus into sub dataset sizes (tiny, small, med, large, x-large, full) and compare recognizer
performances based on unseen and test on train data. Both solutions will use the same Dictionary
(CMU Dictionary), Language Model (n-gram).

6.2 Scoring

Scoring is the process of rating the quality of the models created. We use SCLITE to generate the
scores to compare the decoding performances of the models [SCLITE]. The process compares two
transcripts. SCLITE compares each line of the hypothesis transcript with the reference transcript,
counting the number of times a word is substituted for another word is added or deleted.

6.3 Experiment Results

We partially could complete all experiment runs and use the SCLITE scores to report the accuracy
of our models instead. HMM (Sphinx) have reached %41.8 WER on unseen data as the best result
on 300-hour train and decode on full set of Switchboard dataset. LSTM-CTC based on RNN Cells
achieved %55.4 WER on test data and %64.8 WER on unseen data (switchboard) with limited
fine tuning and experience. Although we had limited time and experience on finetuning the model
parameters and transfer learning, we have achieved %20.4 WER on test set of TIMIT corpus based
on the pre-trained model (Switchboard, Fisher, LibriSpeech, Switchboard, Common Voice English)

Dataset HMM-BW-Viterbi | LSTM-RNN-CTC | LSTM-RNN-CTC-Pretrained
Switchboard %41.8 WER - -
TIMIT - %55.4 WER %20.4 WER
NOAA - - -
TIDigits - - -

Table 2 - Results

6.4 Conclusion and Future Work

We have set up an RNN based on LSTM cells that use the CTC loss function. We trained two systems
with medium to large size corpus and evaluated their performances based on Sclite scorer in terms
of Word Error Rate. The results are compared with the HMM-based alternative. The experiment
runs that we designed could only be completed partially due to limited time and resources, but
we’ve reached a significant milestone for our future studies. For the next phases, we have produced
source code and procedures that offer the preprocessing automation need. The source code is on our
GitHub repository. There are significant opportunities for future studies such as data augmentation
(e.g., volume, background noise, reverb, gap removal, overlay, resample of the audio files). Transfer
learning also seems to be a game-changer in terms of efficiency in model training.

References

[Nassif] Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K. (2019). Speech Recog-
nition Using Deep Neural Networks: A Systematic Review. IEEE Access, 7, 19143-19165.
https://doi.org/10.1109/ACCESS.2019.2896880

[Liu] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of
deep neural network architectures and their applications. Neurocomputing, 234(October 2016), 11-26.
https://doi.org/10.1016/j.neucom.2016.12.038

[Koller] Koller, D., Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. United
Kingdom: MIT Press.

[Graves] Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks.
31st International Conference on Machine Learning, ICML 2014, 5, 3771-3779.

[Li] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig,
Xiaodong He, Jason Williams, Yifan Gong, and A. A. (2013). Recent Advances in Deep Learning for Speech
Recognition at Microsoft. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
0-4. http://research.microsoft.com/apps/pubs/?id=188864

[Renals] Renals, S., Morgan, N., Bourlard, H., Cohen, M., & Franco, H. (1994). Connectionist Probability
Estimators In Hmm Speech Recognition. IEEE Transactions on Speech and Audio Processing, 2(1), 161-174.
https://doi.org/10.1109/89.260359

[Lamere] Lamere, P., Kwok, P., Walker, W., Gouvéa, E., Singh, R., Raj, B., & Wolf, P. (2003). Design of the
CMU Sphinx-4 decoder. EUROSPEECH 2003 - 8th European Conference on Speech Communication and
Technology, 1181-1184.

[ESPnet] Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N. E. Y., Heymann, J.,
Wiesner, M., Chen, N., Renduchintala, A., & Ochiai, T. (2018). ESPNet: End-to-end speech processing toolkit.

Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH,
2018-September, 2207-2211. https://doi.org/10.21437/Interspeech.2018-1456

[DeepSpeech] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh, S.,
Sengupta, S., Coates, A., & Ng, A. Y. (2014). Deep Speech: Scaling up end-to-end speech recognition. 1-12.
http://arxiv.org/abs/1412.5567 [Switchboard] Godfrey, John J., and Edward Holliman. Switchboard-1 Release 2
LDC97S62. Web Download. Philadelphia: Linguistic Data Consortium, 1993.

[TIDigits] R. Gary Leonard, and George Doddington. TIDIGITS LDC93S10. Web Download. Philadelphia:
Linguistic Data Consortium, 1993.

[TIMIT] Garofolo, John S., et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web
Download. Philadelphia: Linguistic Data Consortium, 1993.

[NOAA] Speech:NOAA @ foss.unh.edu. https://foss.unh.edu/projects/index.php/Speech:NOAA

[cs224s] Stanford CS224S / LINGUIST285 - Spoken Language Processing web.stanford.edu.
http://web.stanford.edu/class/cs224s/

7 Annex: High Level Design

Preprocess

A 4

Convert Audio
sample rate 16k
bitrate 16bit
channel mono

High Level Design

Transcript

LM

Sentences

Word List
50000000
words

Convert Transriptions

a0l.wav, <s>textl</s>
a02.wav, <s>text2</s>
a03.wav, <s>text3</s>
a04.wav, <s>textd</s>

lowercase
no special characters

Segment Dataset

Transcripts
<s> yeah that's right</s>
<s> really don’t know</s>
<s> nice good idea </s>

Model Training

Evaluation

candidate-model.pub
logs

'

Batch Decode

Generate LM
(n-gram)

Create Alphabet

- 7

Alphabet
ab,c,..,z

-l_’ blank, apostrophe

Codebase
RNN-LSTM-CTC Model

Hypothesis Decoded
Transcripts Transcripts

Tune Hyperparameters
n-hidden

learning-rate

n-epochs

dropout rate
batch-size

early-stop
early-stop-threshold

Scorer (Sclite)

8 Annex: Codebase

Figure6 - High Level Design

The following repository offers preprocessing steps, model parameters, the data used during our experiments.
https://github.com/aygar/deeplearning

	Introduction
	 Learning Methods
	 Conventional Methods
	Motivation

	Model Design
	Model Explanation
	Dataset and Features
	Model Training
	Data Preperation
	Parameters

	Evaluation
	Experiment Design
	Scoring
	Experiment Results
	Conclusion and Future Work
	Codebase

	Annex: High Level Design

