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Abstract

The task of accent transfer has recently become a field actively under research. In fact, several
companies were established with the goal of tackling this challenging problem. We designed and
implemented a model using WaveNet and a multitask learner to transfer accents within a paragraph
of English speech. In contrast to the actual WaveNet, our architecture made several adaptations to
compensate for the fact that WaveNet does not work well for drastic dimensionality reduction due to
the use of residual and skip connections, and we added a multitask learner in order to learn the style
of the accent.

1 Introduction

In this paper, we explored the task of accent transfer in English speech. This is an interesting
problem because it shows the ability of neural network to generate novel contents based on partial
information, and this problem has not been explored as much as some of the other topics in style
transfer. We believe that this task is very interesting and challenging because we will be developing
the state-of-the-art model for our specific task: while there are some published papers about accent
classification, so far, we have not been able to find a good pre-trained model to use for evaluating
our results. Moreover, raw audio generative models are also a very active field of research, so there
is not much literature or implementations for relevant tasks. This task also has significant social
implications as it has been shown that accent can impact one’s salary in the workforce.

2 Related work

Van den Oord et al. at Google DeepMind showed the incredible potential for Vector Quantised-
Variational AutoEncoder (VQ-VAE) for neural discrete representation learning [2]. In their paper, they
mentioned the application for VQ-VAE on audio style transfer with promising results. Furthermore,
models built on top of autoencoders have shown great potential in style transfer as applied to text
[3], [4]. This usually involves adding one or more adversaries and multitask learners on top of the
encoder to facilitate the latent space disentanglement with respect to the style and content space.

Another paper that gave us inspiration is the original WaveNet paper [7]. WaveNet is a deep neural
network for generating raw audio waveforms. The model is "fully probabilistic and autoregressive,
with the predictive distribution for each audio sample conditioned on all previous ones" [7]. It is
known to be particularly fitting for audio-related tasks. For example, when applied to text-to-speech,
WaveNet yields state-of-the-art performance. The authors also showed that it can be employed as a
discriminative model, returning promising results for phoneme recognition, which gave us inspiration
to use it for our task at hand.
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3 Dataset and Features

We used the dataset from the Speech Accent Archive, which consists of parallel English speech
samples from 177 countries. There are 2,138 speech clips of the same passage in English in 177
different accents. We used 1,710 randomly selected speech clips for our training set, 214 speech clips
for our validation set, and 214 speech clips for our test set. The passage that all of the participants
read was:

"Please call Stella. Ask her to bring these things with her from the store: Six
spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for
her brother Bob. We also need a small plastic snake and a big toy frog for the kids.
She can scoop these things into three red bags, and we will go meet her Wednesday
at the train station."

The raw input to our algorithm are audio clips of English speeches with different accents in .mp3
format; during data pre-processing, we converted them into .wav format so that we can feed them
into the WaveNet. Each audio clip was then partitioned into two-second clips sampled at 16384 Hz.
Then, these two-second clips are normalized to take on real values between -1 and 1. After all the
preprocessing, our dataset totaled to 19,450 distinct 2 seconds audio clips with 207 different accent
labels. The output of the model is now raw audio waveform that can be easily converted into .wav
format as our final output.

4 Approach

We planed on implementing a vector quantised variational autoencoder (VQ-VAE) in combination
with a multitask classifier and an adversary to disentangle the content information from the style
information in the latent space. This encoder seeks to reduce the dimensionality of the input feature
by extracting the high level features in the latent space, then a decoder is trained to reconstruct the
original input from that high level overview. More specifically, the encoder would output a 256
dimension vector where the first 32 numbers represent a style encoding and the other 224 representing
content information. In order to facilitate the disentanglement, we have a multi-layer perceptron
classifying the style label of the style space that is trained with the encoder. In our original model, we
had another classifier as an adversary and tries to classify the style label of the content space, and
we punish the encoder if the adversary succeeds. Unlike the style classifier, the adversary’s back
propagation does not extend to the encoder. However, we found out later that the adversary does not
work well with our model because its gradient explodes and overshadows the other losses which are
more important. We have tried scaling it down and gradient clipping, neither approach produced
satisfying results, so we decided to remove the adversary from our model for the scope of this project.
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Figure 1: Our model architecture.



In our final model (see Figure 1), the inputs are raw audio clips sampled at 16384 Hz; each data entry
is a two-second audio clip, so the input dimension is 1 X 32768. The encoder is an existing Wavenet
implementation that takes in raw audio inputs and produces a 256 X 1 encoding. The encoder itself is
composed 2 Wavenet blocks, and each block has 14 layers, with a structure shown in Figure 2.
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Figure 2: Structure of each block within the encoder and decoder.

Then the encoding is quantized through a vector quantizer and fed into the decoder. For the decoder,
we used the pre-exisiting implementation of the wavenet_vocoder (with 2 blocks and 10 layers per
block) that takes in the encoded latent vector and produces a 128 X 256 output. For our final layer,
after the wavenet_vocoder spits out the 128 X 256 output, there is one more gated convolutional
block with 7 layers that transposes the 128 X 256 result back up to the 1 X 32768 dimension of
the input audio. No residual or skip connection is used in this final block due to the upsampling
involved in the transposition. In total, the decoder has 27 gated convolutional layers as described in
the WaveNet paper. As for the multitask in our final model, we chose to use a simple one-layer dense
network with a softmax activation that takes the first 32 numbers of the latent space and predicts the
style label.

Some of the hyperparameters that we have tried to tune include the architecture of the encoder used,
whether it uses a WaveNet with raw audio as input, or if it take in MFCCs (explained in Section 6)
as input, the number of convolutional layers (7 to 28) that the encoder uses, number of gates and
filters associated with the decoder, whether the encoder and/or decoder utilizes residual connection,
different sizes of the latent space dimensions (which can be anywhere from 64 to 512), different
number of discrete embeddings in the vector quantizer codebook (which can be anywhere from 64 to
1024), and different sizes of multitask and adversary (between one and four layers).

After experimenting with many different hyperparameters, we found that the model with the vector
quantizer always converge to producing silence within a few epochs (less than 5 in most cases), so in
our final model, we decided to remove the vector quantizer, which made the model converge much
slower (usually after 15 epochs). The initial output of the model without the vector quantizer were
also better than the one with the quantizer.

4.1 Loss Function

There are two main parts to our final loss function: L,cconstruction aNd Liyuititask, €ach defined
below:

Lmultitask = 7El€labelsts (l)log(yg(l))
Lyeconstruction = ||LIJ - i‘| |%

Our final loss is defined as Lfinal - Lreconstruction + )\Lmultitask-
Where ) is a constant hyperparameter that needs to be tuned.



5 Evaluation

We expect our model to take in voice recordings and output voice recordings of the same content in a
different accent. Therefore, we can evaluate the style transfer accuracy and the content preservation
with additional pre-trained networks in audio accent classification and transcription. Both transfer
accuracy and content preservation will be measured as %, where N orrect 18 the number of
correctly labeled results, and Ny, is the total size of our output data.

6 Results and Analysis

As mentioned above, initially, we experimented with models that took in Mel-frequency cepstral
coefficients (MFCCs) of the original audio that tried to synthesize the raw audio out of that. The idea
is that MFCCs would have encoded meaningful timbral and textual information about that audio that
would ease the work of the encoder, thus requiring a much smaller network. However, the models we
tried always converge within a couple of epochs and produce nothing but silence with a bump in the
beginning and end.

Subsequently, we drastically increased the size of our model by using a WaveNet at both the encoder
and decoder. Intially, this model seems to be yielding resulsts that look a lot more like actual audio
waveforms, but the output is still just pure noise. And surprisingly, the models always converge
towards silence. As mentioned before, removing the vector quantizer seems to make the model
converge more slowly, but eventually the model still converged towards silence after 17 epochs, as
can be seen in the spectrograms demonstrated below.

With the size of our final model and dataset, the computation cost already exceeded the scope of a 10
week class project, since the model was takes hours to train one epoch. It is very possible that going
bigger, both in terms of the size of the model and the size of the dataset will yield more promising
results. But as we have shown, the task is likely not doable with the size of our model.
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One hypothesis for the noisy output comes from the nature of how we are training the multitask.
Our multitask predicts an accent label, whereas the encoder-decoder network deals exclusively with
synthesizing audio. Therefore, one hypothesis for the noisy output of the model is that during
backpropagation, the parameters from the multitask module ware polluting the encoder parameters,
thus causing the output to have unexpected results. Furthermore, if that is indeed the case, and we are
not actually constrained by the size of our model, then we can conclude that the fundamental idea of
latent space disentanglement with a multitask and adversary as we know it might not work with raw
audio.

7 Conclusion and Future Work

Our model architecture requires that the model learn a concise encoding from an audio clip with
over 30,000 time steps, which naturally requires a sizable model to do so. This, coupled with the
fact that some portion of the latent space must go to encoding style information, makes the task
especially difficult. Although this idea of latent space disentanglement produced promising results in
applications to text data, it will be difficult to apply it in synthesizing raw audio.

While we have been able to come up with an initial implementation based on WaveNet we can
potentially incorporate the JITT ER layer of the WaveNet structure, which is a relatively novel
concept that we would like to explore [6]. JITT E R have the potential to make the model more
robust because it lowers the model’s dependence on the consistency across groups of token. During
training, JITT ER allows each latent vector to replace either one or both of its neighbors. This
regularization also promotes latent representation stability over time. On the other hand, while doing
this project, we realized that there is a lack of good and large enough datasets that can be used for
this task. In fact, one of main challenges for this task is keeping a consistent performance across
different "target accents" given an imbalanced dataset because the amount of data (speech clips).
Thus, a valuable potential future work is to develop larger and more balanced dataset of audio clips
with different accents in English speech.

8 Code

https://github.com/paulmure/AccentTransfer

9 Contributions

Both Paul Mure and Renee Li conducted background research for this project. Paul Mure implemented
the models. Renee Li wrote most of the report. Both authors contributed equally.
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