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Forecasting PM 2.5 Pollution Using Weather Data 

Abstract 
Air pollution poses serious health hazards, especially for people in urban environments and in              
developing nations. With the advent of machine learning models and deep learning, it is              
interesting to explore the potential of using data from existing in-situ monitoring infrastructure to              
make air pollution predictions. In this paper, we have looked at implementing an RNN with               
LSTM to make predictions of PM2.5 concentrations in the Bay Area. Our model robustly makes               
accurate forecasts for different locations spread across the Bay. 

Introduction 
Air pollution related illnesses are one of the most widespread health hazards responsible for 5               
million deaths every year (4th highest risk factor in causes leading to death). A World Bank                
study also estimates that air pollution illnesses and deaths cost the global economy $225 billion               
annually. The primary air pollution metric is PM2.5, or particulate matter that is up to 2.5 microns                 
in diameter. 
 
Each 10-g/m3 elevation in long-term average PM2.5 ambient concentrations was associated           
with approximately 4-8 percent increased the risk of cardiopulmonary and lung cancer            
mortality​1​. Hence, to grapple with a problem of this size, it is necessary to introduce policies                
based on real world quality data trends and analysis.  
 
The instruments and sensors used to evaluate air quality levels are usually expensive and              
hence makes it difficult to deploy them in large numbers. A neural network trained to make                
predictions of air quality based on meteorological parameters and ground truth values can be a               
very useful tool to combat this problem. 

Related Work 
Efficient prediction of the air quality response to different emission and meteorological changes             
is very challenging because of the nonlinear response of air quality to these changes. Some of                
the approaches and strategies followed by other researchers have been discussed here.  
The most interesting approach we noted was that of the pf-RSM and DeepRSM wherein the               
network was developed using chemical transport models to create and track emissions in the              
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atmosphere with high spatial and temporal resolution while meteorological fields were based on             
simulations with the Weather Research and Forecasting (WRF) model. Polynomial functions           
were used to represent the non-linear responses and a CNN deep neural network was used to                
analyze satellite images and predict the ambient air quality levels.​2 
 
The earliest air quality prediction models using machine learning relied on Autoregression            
approaches but these failed to make good forecasts, especially because it relied on a              
correlation between the past and the future values.​3 
A study compared the performance of Artificial neural networks and Genetic programming            
approaches in forecasting the air quality parameters like oxides of nitrogen, oxides of sulphur              
and particulate matter. Results suggested that the GP worked as well as the ANN approach.​4  
 
Our model was inspired by a South Korean study implemented LSTM units and             
Encoder-Decoder model with Adam optimizer to forecast air quality​5 and DeepAir which used             
LSTM recurrent neural network (RNN) as a framework for forecasting in the future, based on               
time series data of pollution and meteorological information. These studies observed that their             
models exhibited appreciable accuracy in forecasting air quality when compared to conventional            
SVR models. 
 
It was also interesting to study the methodology of using an RNN with LSTM to forecast the                 
complex ozone cycle concentrations in the atmosphere.​6  

Dataset and Features 
Our raw data was collected from CIMIS stations​7 and the EPA Outdoor Air Quality Data set​8 .                 
We locate areas which have both CIMIS and EPA stations collecting the desired data we need                
over a long period of time. Currently, we have collected 5 years worth of daily data for Santa                  
Cruz, San Rafael, and Sebastapol using their respective CIMIS and EPA stations for the years               
2015-2019. From the EPA dataset, we use the Daily Mean PM2.5 concentration values. We use               
the following meteorological parameters from the CIMIS stations: dew point, average air            
temperature, average vapor pressure, wind run, average wind speed, precipitation, latitude, and            
longitude. We take these daily values and match them by date to get a complete data matrix for                  
each day. Listed below is a sample figure showing the prepared csv file that is ready to input                  
into the model. 
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Fig 1. - Sample Input Data Combined and Prepared for Input to Model 

 
To evaluate our model predictions, we picked stations in different regions of the bay area which                
were not in close proximity to our training set stations - Oakland, Napa College and Richmond. 

Methods 
Our approach follows the work conducted by Vikram Reddy​9 in the paper “Deep Air: Forecasting               
Air Pollution in Beijing, China”​10 and Sagar Mankari​11​. We first established that we could clone               
and run their repositories. After we were successful with that endeavor, we began to experiment               
with running their model using our data as the input.  
 
The model used an LSTM architecture with a mean absolute error loss function.The LSTM              
network is able to learn long term dependencies through its feedback connections and cell              
memory unit. This makes it especially useful when dealing with sequential data, such as time               
series air pollution information. For our model we ultimately decided to use a mean squared               
error loss function, described further in the experiment section below. 

Experiments/Results/Discussion 
After successfully running our first prototype for the project milestone, we were able to expand               
upon our work and develop a more accurate model. 
 
Based on the initial results from training version 1, we decided to keep the batch size (72) and                  
epochs (50) hyperparameters the same as the model appeared to be converging relatively             
quickly. We also decided to keep the train/test split at 70/30 for our moderate amount of data. 
 
Since we are working on a regression rather than classification problem, we chose the root               
mean squared error to be our primary metric to determine model success. We adjusted the               
network architecture (layer and neuron count), loss function, and dropout rate to adjust model              
performance. A summary of the model versions and the hyperparameters and architecture that             
were tuned can be seen in figure 3 below. 
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Fig 3 - Summary of Model Performances 
 
After each model was trained, we tested it by predicting PM2.5 values for Oakland. Figure 4                
shows the predictions for Oakland with model version 2. We found the model to have a high                 
bias. This prompted us to create a deeper network architecture in the future versions to address                
this problem. 
 

 
Fig 4 - Oakland Prediction PM2.5 with Model Version 2 

 
After training model version 4, we saw better performance with less bias overall as shown in                
Figure 5. Future improvements could be made by using an even larger data set or even deeper                 
network architecture. 
 

Model 
Version 

Key Features RMSE 

Version 1 1 layer; 50 neurons; loss=mean absolute error; dropout=.3 6.990 

Version 2 1 layer; 100 neurons; loss=mean absolute error; dropout=.4 6.060 

Version 3 2 layers; 50 neurons/layer; loss=mean squared error; 
dropout=.4 

5.380 

Version 4 3 layers; 100 neurons/layer; loss=mean squared error; 
dropout=.4 

3.696 



 
Fig 5 - Oakland Prediction PM2.5 with Model Version 4 

 
We also tested the final model, version 4, on the data from Napa and Richmond to compare and                  
the model performed relatively well. The figures can be found in the appendix. 
 
Our model appears to have identified the general trend in PM2.5 pollution as it correlates to                
weather conditions. The predictions may not be 100% accurate but they follow the general trend               
lines in both rural and urban areas. We also see less spikes in the data relative to the actual                   
meter readings. This could be evidence that the model is eliminating some of the noise that the                 
equipment inherently experiences as a result of the monitoring technique. 

Conclusion/Future Work 
Our final model was able to learn the general trends and changes in the levels of PM 2.5 with                   
respect to changes in the meteorological parameters. We were able to accurately forecast the              
air quality of locations in the Bay Area appreciably far apart from our training set coordinates,                
such as Oakland (the train set did not contain stations from the East Bay). 
 
However, with a relatively restrictive training dataset, this model might not be as accurate in               
trying to forecast the ambient air quality of climatic types different from the Bay Area               
Microclimates. We would require to significantly increase the size of the training set to make the                
model more generalizable. Additionally, a framework to keep track of the sources of emissions              
(absent from our work) will add greater accuracy to the predictions. 
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publishing the final results. 



Appendix 

 
Fig A1 - Napa Prediction Final Model 

 
Fig A2 - Richmond Prediction Final Model 


