
Identifying DNA Sequencing Anomalies

Ryan Humble*
Institute for Computational and Mathematical Engineering

Stanford University
ryhumble@stanford.edu

Chuck Seberino*
Roche Diagnostic Systems
seberino@stanford.edu

Abstract

We used a deep neural network to classify nanopore insertion during a pre-
sequencing setup step for nanopore-based DNA sequencing. Several networks and
loss formulations are considered to achieve higher classification accuracy. Lastly,
we explore an explainability analysis technique to analyze which features are most
important in creating a more ideal sequencing setup.

1 Introduction

DNA sequencing is a complex, multi-step process that is prone to errors and anomalies. Modern
nanopore-based DNA sequencing heavily relies on a successful pre-sequencing setup to create the
ideal conditions from which to measure the polymerase incorporation activity (i.e. identifying
nucleotide bases). Incorrect setup conditions can lead to poor or corrupted DNA reconstruction and
identification. Each correctly calibrated sequencing sensor should have exactly one fully formed
nanopore inserted into the measurement region. Of significant concern is when more than one pore
is inserted, causing mixed signals to be received, contaminating results. A lesser concern is when
no pores are inserted, leading to no measurement. The goal is to optimize this pre-sequencing setup
to provide ideal initial conditions that minimize sequencing errors. This requires identifying which
features of the setup are most salient to nanopore insertion and, ultimately, sequencing error.

Our primary contribution is a neural network to classify the nanopore insertion as no, single, or
multi-pore, given measurements from the various pre-sequencing setup steps. We also perform an
explainability analysis to determine which feature of the sequencing setup are most impactful.

Figure 1: Illustration of nanopore sequencing platform.

CS230: Deep Learning, Fall 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Related work

Using deep neural networks for classification is increasingly ubiquitous in nearly every field. For
large, well-balanced datasets, deep neural networks are incredibly accurate. However, many real-
world applications struggle from highly imbalanced datasets. As summarized in [1], many approaches
use sampling techniques to balance the classes. Most common are random oversampling of minority
classes or undersampling of majority classes. Typically, oversampling suffers from overfitting
while undersampling drops important information from the majority class. SMOTE [2] uses a
more sophisticated oversampling technique whereby synthetic data is created between minority
samples and its nearest minority neighbors in the feature space, thereby ideally avoiding overfitting.
More recently, [3] uses an SVM’s support vectors to undersample the majority class without losing
important information, but this general technique is limited to methods that emit "hard" examples
from the majority class. Although each of these techniques has its drawbacks, they have been shown
to significantly improve classification accuracy across a wide array of benchmarks.

For explainability analysis of fully-connected networks, a common technique is gradient fingerprint-
ing. As demonstrated in [4] and [5], by considering the gradient of the loss function with respect
to the input features, the most salient features can be inferred. Another explainability approach is
LIME [6], which learns a simple (typically linear) local classifier near a test point to more explain the
classification result. A related method, SHAP [7], seeks to quantify each feature’s contribution of the
prediction using Shapley values.

3 Dataset

The dataset will comprise of measurements collected from a nanopore sequencing instrument over
the course of 2 runs, where each run started with 2 million active cells. A final active cell count of
954368 and 937984 samples, respectively, was recorded. Each cell sample contains 59 input features,
32 of them as categorical state classifications, and 27 as numeric electrical measurements. These
features are selected from 10 different measurement captures, taken as part of the pre-sequencing
setup and calibration of the sequencer. Optimal setup of the instrument requires precise application
of both a lipid bilayer substrate over a sensor well (mimicking a cell wall), and insertion of a single
nanopore within the bilayer. Small electrical fields are generated to coax these formations along. This
time consuming and delicate process is prone to errors and is not fully understood. Nearly half of the
active cells (1.88 million values) are labeled with an initial classification label, identifying a no pore
(0), singlepore (1), or multi-pore (2) state. The nanopore labels are highly imbalanced, as shown in
Table 1.

Label Count Percentage

No Pore 29,806 1.586%
Single Pore 1,848,867 98.410%
Multi Pore 72 0.004%

Total 1,878,745
Table 1: Statistics on prevalence of nanopore labels

We split the available data into train, validation, and test sets at the ratio 80 : 10 : 10 and standardized
each feature to have zero mean and unit variance.

4 Methods

Our problem is a highly imbalanced classification problem. We construct our classification algorithm
from a combination of a sampling method, a neural network architecture, and a loss formulation.

For our sampling method, we considered several popular techniques: random undersampling, random
oversampling, and SMOTE. Consider a classification problem with C classes with counts ci. Random
undersampling discards data from the original dataset; at the extreme, it removes data from each
class until all classes have exactly mini ci data points. Random oversampling adds duplicate data
from the minority classes; at the extreme, it adds until all classes have exactly maxi ci data points.

2



SMOTE is a variant of oversampling that creates new data for minority classes by interpolating
between two existing data points of a minority class, in the hope of avoiding overfitting; however,
we found SMOTE to be too computationally expensive for a dataset with over a million points.
We instead elected for a balance of undersampling and oversampling and used a weighted random
sampling scheme where the sampling probability was the inverse of the class counts. This effectively
rebalances the training set so that each class is approximately equally represented.

For our neural network, we used the deep feed-forward network architecture presented in Figure 2.
We used only 43 input features from the dataset and have 3 classes. Except for the final layer before
the output, the hidden layers are each a DenseBlock unit, which is composed of a linear layer, ReLU
activation, batch normalization, and a dropout layer. We choose ReLU activation to avoid vanishing
gradient issues with tanh/sigmoid. We added batch normalization to prevent covariate shifts. Lastly,
we add a dropout layer with a configurable drop percentage.

Input

43 L
in

ea
r

R
eL

U
B

at
ch

N
or

m
D

ro
po

ut

128

Dense Block

L
in

ea
r

R
eL

U
B

at
ch

N
or

m
D

ro
po

ut

128

Dense Block

L
in

ea
r

R
eL

U
B

at
ch

N
or

m
D

ro
po

ut

128

Dense Block

L
in

ea
r

128

Output

3

Figure 2: Nanopore classification feed-forward neural network architecture.

For our loss formulation, we consider three different approaches. Consider a batch of size n and
number of classes cl. Let z be the output from the final layer and ŷ = softmax(z). The first loss
formulation is the standard cross entropy loss

LCE(ŷ, y = ej) = − log(ŷj)

The second loss formulation is the standard multi-margin loss

LMM (z, y = ej) =
∑
k

max (0, 1 + zj − zk)
p

where p ∈ {1, 2} distinguishes between a hinge and squared hinge loss. For both of these formulations,
the batch loss is the mean of the individual losses. The third loss formulation follows [8] and
effectively turns the last layer into several one-vs-rest linear SVMs. Let W ∈ R3×128 be the weight
matrix from the final linear layer. Let tij = 1(i = j) − 1(i 6= j) ∈ {+1,−1} be the target for
the ith training example with respect to the jth SVM. For the entire batch, the loss for the jth SVM,
corresponding to class j, is

LSVM,j(Z, Y ) =
1

2
‖wj‖22 +

C

n

∑
i

max(0, 1− zijtij)
p

where p is the same as with the multi-margin loss loss and C is a hyperparameter that penalizes
violations. The total loss is then

LSVM (Z, Y ) =
∑
j

LSVM,j(Z, Y )

=
1

2
‖W‖2F +

C

n

∑
i,j

max(0, 1− zijtij)
p

5 Results

We use AUPRC (area under precision-recall curve) as our primary metric, where we use a one-vs-rest
setup since there are more than two classes. As motivated in [9], we specifically avoid AUROC (area

3



under receiver operating curve) since our data is heavily imbalanced. A F1-score could also be used
here, but this only captures the model performance at a single threshold along the PR curve. For
visualization, we include the confusion matrix for the best models.

Our nanopore classification method has a number of hyperparameters. For training, we choose a
class-weighted resampled dataset of the same size as the original training set, a batch size of 256,
and the number of epochs as 10. These were chosen to achieve a moderate training time (roughly
20 minutes on a K80 GPU). We varied the learning rate in {10−4, 5 ∗ 10−4, 10−3, 5 ∗ 10−3, 10−2}
and varied the dropout rate in {0, 0.2, 0.4}. We set p = 2 for the multi-margin and SVM-based loss
and set C = 5 for the SVM-based loss as to heavily weight violations; we ran out of time to more
carefully select these hyperparameters. We used PyTorch [10] and PyTorch Lightning [11] to define
and train the models. Also, we use both logistic regression and linear SVM without any sampling as
baseline methods; we define and train these models with scikit-learn [12].

Table 2 shows the performance of these methods; the confusion matrices are shown in Figure 3. For
the deep methods, we chose the hyperparameter setting that maximized the average AUPRC. For
each loss function, the best cross-validated dropout rate was in fact 0 . For the cross entropy and
SVM losses, the learning rate was 0.001; for the multi-margin loss, the learning rate was 0.01.

No Pore Single Pore Multi Pore

Logistic Regression 0.452 0.999 0.407
Linear SVM 0.439 0.999 0.292
NN (CE Loss) 0.736 0.999 0.461
NN (MM Loss) 0.716 0.999 0.585
NN (SVM Loss) 0.733 0.999 0.418

Table 2: Experiment results on classifying nanopore label. AUPRC is calculated as one-vs-rest.

We also seek to derive insights into how to create a more ideal sequencing setup. For the best
model above, the deep network with the multi-margin loss, we now employ SHAP [7] to explain the
classification results. We specifically consider the explanation for no pore and multi-pore data points
in the testset. Figure 4 shows an explanation summary. This very clearly identifies a single feature,
occal_oc_calibration_pos_oc, as being highly explanatory. Small occal_oc_calibration_pos_oc is
strongly associated with no pores while large occal_oc_calibration_pos_oc is strongly associated
with multi-pores.

6 Conclusion/Future Work

The goal of this project was to identify bad pores and gain insights into better optimizing the pre-
sequencing setup. We found that a deep feed-forward network with a multi-margin loss performed
quite well despite a massive data imbalance. Using this model, we were able to infer an important
explanatory feature that is strongly related to the pore quality.

With more computational resources, we would have considered more expensive sampling techniques,
like SMOTE, and a deeper neural network, as there were no indications of overfitting to the training
set. Additionally, if we had more time, we would have considered the harder, but potentially more
informative, regression problem. For roughly 0.5% of the data, we have a measure of the sequencing
correctness: the composite edit distance between the measured DNA read and the "true" sequence.
The goal of the pre-sequencing setup is to ultimately enable correct sequencing. Using a similar
progression from simple to deep models above, and employing similar explainability analyses, we
would hope to learn which setup features are most important to minimizing the ultimate sequencing
error.

4



(a) Logistic regression classifier (b) Linear SVM classifier

(c) DNN (CE Loss) (d) DNN (MM Loss)

(e) DNN (SVM Loss)

Figure 3: Confusion matrices for selected classifiers.

(a) No pore explanation (b) Multi pore explanation

Figure 4: SHAP explanation summaries for bad pores. Large SHAP values correspond to a large
effect on the predicted class label. Feature coloring is only relative to the other data points in the plot.

5



7 Contributions

Ryan wrote the "Related work", "Methods", and "Results" sections. He also wrote the code to obtain
the classification results and SHAP explanations.

Chuck wrote the "Introduction" and "Dataset" sections. He also did all of the data acquisition and
wrote the associated code. He also put together the slides for the video and the nanopore platform
graphics.

References
[1] H. He and E. A. Garcia. Learning from Imbalanced Data. IEEE Transactions on Knowledge and

Data Engineering, 21(9):1263–1284, September 2009. Conference Name: IEEE Transactions
on Knowledge and Data Engineering.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321–357, June 2002.

[3] M. Y. Arafat, S. Hoque, S. Xu, and D. M. Farid. An Under-Sampling Method with Support
Vectors in Multi-class Imbalanced Data Classification. In 2019 13th International Conference
on Software, Knowledge, Information Management and Applications (SKIMA), pages 1–6,
August 2019. ISSN: 2573-3214.

[4] Yuanchao Shu, Yinghua Huang, Jiaqi Zhang, Philippe Coue, Peng Cheng, Jiming Chen, and
Kang G. Shin. Gradient-Based Fingerprinting for Indoor Localization and Tracking. IEEE
Transactions on Industrial Electronics, 63(4):2424–2433, April 2016.

[5] Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low, and Mun Choon
Chan. GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly
Detection. In 2019 IEEE Conference on Communications and Network Security (CNS), pages
91–99, June 2019.

[6] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Ex-
plaining the Predictions of Any Classifier. arXiv:1602.04938 [cs, stat], August 2016. arXiv:
1602.04938.

[7] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran
Associates, Inc., 2017.

[8] Yichuan Tang. Deep Learning using Linear Support Vector Machines. arXiv:1306.0239v4 [cs,
stat], page 6, February 2015. arXiv: 1306.0239v4.

[9] Takaya Saito and Marc Rehmsmeier. The Precision-Recall Plot Is More Informative than the
ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE, 10(3),
March 2015.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[11] WA Falcon. Pytorch lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3, 2019.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

6


	Introduction
	Related work
	Dataset
	 Methods 
	Results
	Conclusion/Future Work 
	Contributions

