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Abstract

Generative approaches have proven to be very effective in style transfer tasks for
image data. Gatys et al.[3] demonstrated how the skill of convolutional neural
networks (CNN) in extracting features could be applied to extract style and content
information using pre-trained networks such as VGG19[15]. The result is a flood of
interesting re-imaginations of classic pieces of artwork, and interesting applications
such as fun camera filters. Similarly Generative Adversarial Models (GANs)[5] and
Variational Auto Encoders such as CycleGan[16] have also proven to be effective
in style transfer tasks for image data. In the domain of audio, the problem of Voice
Conversion could be framed similarly as a style transfer problem. The ability to
speak and automatically output audio in someone else’s voice such as a famous
celebrity remains a recurring theme in popular science fiction movies. Current
voice conversion techniques often rely on parallel voice training data where two
users say the same sentence, however this obviously limits the number of source
and target speakers. This paper explores the feasibility of applying generative
techniques to convert the voice of an unseen speaker, building on and comparing
existing works including Neural Style Transfer using VGG-like networks, and a
Variational Auto Encoder approach using AutoVC[13].

1 Introduction

Voice Conversion or the ability to speak in someone else’s voice continues to capture the cultural
zeitgeist through film and media. However these depictions often represent practical applications
such as speech assistance applications for accessibility, privacy protection for text to speech systems,
practical applications in entertainment industry, and potentially serving as a critical building block of
addressing the challenge of speech to speech translation.

Voice conversion can be explained as applying the learned mapping on the audio between the input
speaker’s voice and a target speaker’s voice to make it appear as though the input speaker is talking
in the target speaker’s voice. Existing solutions have produced high quality results when parallel
utterances are available (i.e. the input speaker and target speaker have said the same sentence and
both are included in the training set). The problem of Zero Shot Voice Conversion is in theory very
similar to generative style transfer techniques developed for image translation. This paper will explore
applying the Neural Style Transfer algorithm from Gatys et al. while modiying the feature extraction
networks, and the results will be compared to AutoVC, an auto encoder-decoder approach to address
voice conversion, trained on VoxCeleb1[11].

∗Code: https://github.com/niral28/generative-vc [2, 12]
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2 Related work

In recent years there have been several papers which have attempted parallel data free voice conversion.
The seminal work of Gatys et al..[3] demonstrated the impressive capabilities of convolutional neural
networks in extracting style properties and attributes on images. However this approach was limited
by only using a single image in each domain and relies heavily on the pre-trained network to extract
style and content features. The application of this algorithm on Audio has been very limited and
appears to be under explored. Grinstein et al.[7] is one of the few published papers that applied the
algorithm to audio and found that a framework based on a CNN feature extractor does not generally
work well on audio represented as 2D mel-spectrograms. This demonstrates that a carefully designed
feature extractor designed for audio data is a pre-requisite to producing any meaningful results.

While 3x3 convolutions work well for extracting style and texture features in traditional image data,
this is less applicable to audio data which is 1D in nature. Dmitry Ulyanov[1] demonstrated that 1D
Convolutions can be used effectively to extract audio texture and style information.

In a similar vain, Variational Autoencoders(VAE)[9] have been gaining popularity in voice conversion
tasks. While VAE’s lack the distribution matching properties of GANs they are easier to train due to
the fragile convergence tendency of a GAN. CycleGAN uses a encoder-decoder architecture with a
GAN to extract style information to train a GAN’s generator and discriminator. AutoVC takes an
interesting approach by using two encoders one to extract content information from an utterance
and another encoder to extract embeddings for speaker voice regardless of an utterance and then a
decoder based on the work of Shen et al..[14] with Tacotron 2 to generate output speech. This paper
will compare these approaches and understand why one approach may work better than another.

3 Dataset and Features

Figure 1: Example of two .wav file processed as a Mel-Spectrogram for input into the VGG19,
VGGish and AutoVC encoder networks.

This paper uses the VoxCeleb1 dataset[11] which consists of over 100,000 utterances for 1,251
celebrities extracted from videos on YouTube. This dataset was chosen to due the diversity of
examples and in addition due to potential interesting application of converting a user’s voice into that
of an iconic celebrity or movie character. For training the data, specifically the AutoVC network,
the data was split into a training/test split of 97% and 3% respectively. Given the complexity of the
problem, it was thought that giving the majority of data for training purposes would lead to better
results.

Moreover, in order to aid the network in its ability to extract speaker style and content information,
the raw audio data needs to be processed. Audio data extracted from a waveform file is 1-dimensional,
however in order to help CNN’s better extract information from an audio signal, it is practice to
convert this into a 2-dimensional representation using Short Time Forier Transform (STFT) applied to
the log scale to extract a 2D representation of sound with time and frequency. This representation is
further processed by applying Mel filter banks which are used to apply non linearity to the frequency
spectrum. See Figure 1(3) for an example of a mel-spectrogram. Given the audio data fed in all vary
in length the data is chunked into bins of size NXT where N represents the number of mel-frequency
bins and T the number of time steps.

2



4 Methods/Approach

To evaluate Voice Conversion using Generative Techniques, two types of methods are compared the
application of Neural Style Transfer algorithm with VGG-based architectures (using 3x3 and 1D
convolutional blocks) and the AutoVC auto-encoder decoder framework.

4.1 Neural Style Transfer

Neural Style Transfer for images, originally outlined by Gatys et al., takes as input two 224x224x3
images A,B representing the style and content with the goal of outputting another image that
applies the style of image A to the content of image B. To review, the Neural Style Transfer
generates an image by performing gradient descent on a a randomly initialized image, −→x . The
algorithm first minimizes loss on the mean square loss between the −→x and content image −→p ,
Lcontent(−→p ,−→x , l) = 1
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total loss, used for optimization is defined as:

Ltotal = αLcontent + βLstyle

(3)).

Finally, in order to reconstruct the audio from the spectrogram, the Griffin-Lim Algorithm[6] was for
several iterations to get a 1D audio signal.

4.1.1 Using VGG-19 with ImageNet weights

To get a baseline understanding of how well generative approaches with Convolutional Neural
Networks might work for audio data, we start off by testing how well Neural Style transfer with
pre-trained VGG on ImageNet works on Mel-Spectrogram Images.

In order to match the expected input size of VGG, the 2D audio mel-spectrogram was tiled into
three channels and resized to match the (224 x 224 x 3) image size. To calculate style gradients,
similar to the original paper, the activation from VGG’s block1_conv1,block2_conv1, block3_conv1,
block4_conv1, and block5_conv1 were taken; while to calculate content gradients the activation
from block5_conv2. This was chosen based on the principles that higher level layers have learned
more complex features while lower level layers have learned specific attributes of an image.

4.1.2 Using VGGish with AudioSet weights

Moving further, a hypothesis was made that an CNN based Audio Classifier may produce even better
results, given the architecture of VGG-19 is designed for images which are more complex and spatial
in nature compared to audio spectrograms. The VGGish[8] architecture pre-trained on the Audio
Set dataset, which contains audio from thousands of YouTube Videos, [4] fit a good description of a
network with layers that might produce features that could more meaningfully represent style and
content while using the same loss function. While, VGGish only has 6 convolutional layers, the
same principle applied in VGG19 based Style Transfer was applied here, where style gradients were
calculated using layers conv1, conv1, conv3/conv3_1, conv3/conv3_2, conv4/conv4_1, while
the final activation from the final convolutional layer conv4/conv4_2 was used to calculate content
gradients.
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4.2 Shallow Randomly Initialized CNN

While the above methods rely on Deep Neural Networks with 3x3 convolutional layers designed
for classification purposes, the primary goal of these input networks is to extract a meaningful
representation of style and content information. Audio by nature is a one dimensional signal,
converting it using a STFT represents it as a 2D image like representation. Ulyanov’s method
modifies this approach by treating the 2D spectrogram as a 1xT image with 4096 Filters, where T
represents the timesteps of the spectrogram. Once the input feature is reshaped in this way, a shallow
single layer 1D convolutional network with 4096 filters could extract style and content information
that could be fed to Gatys’ original Neural Style Transfer algorithm to produce meaningful results.
One of the challenges of this approach is that since vocal audio is subtly different across speakers
compared to music or image data, it becomes harder to extract style content.

4.3 AutoVC: Autoencoder-Decoder

Figure 2: AutoVC Auto Encoder-Decoder Conceptual Architecture [13]

While the Neural Style Transfer algorithm takes on the task of Image Translation well, it appears that
without major changes the algorithm would not work effectively for the task of Voice Conversion.
Taking some of the same principles, such as using 1D convolutional layers, AutoVC rather than trying
to calculate style attempts to calculate the direct mapping between a source speaker and a target
speaker with an encoder-decoder architecture (see Figure 2). The architecture consists of a content
encoder EC , and a speech encoder ES . The speech encoder is a pre-trained network on VoxCeleb1
and Librispeech for a total of 3549 speakers, which make network embeddings generalizable. While
the content encoder takes as input the mel-spectrogram of source speech X1 concatenated with the
speaker embedding ES(X1) .

During the training process, the content and decoder are trained to minimize the identity loss between
two input different utterances U , from the same speaker X and the generated output from the decoder
D:

C1 = Ec(X1), S1 = Ec(X
′

1), X̂1−>1 = D(C1, S1)

minEc(·),D(·,·)L = Lrecon + λLcontent

where Lrecon is the MSE (L2) of the generated output X̂ and X while Lcontent is the the euclidean
distance (L1) between Ec(X̂) and C1.

While the intricacies of the details of the AutoVc Architecture are in the Appendix, it is worth
noting that a key aspect which the success of the results rely on is the Bottleneck layer. The output
embeddings of the Content Encoder are down sampled in this bottleneck layer in an attempt to remove
information about the source speaker. If the embeddings are overly downsampled then too much
information is removed leading to noiser results; if the bottleneck is too wide then the reconstruction
is imperfect.
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5 Experiments & Evaluation

Figure 3: Average Mean Opinion Score for each Approach. [13]

To quantitatively evaluate and compare the results of each of the algorithms explored, this paper
uses Mean Opinion Score to rank an audio clip from 1 to 5 the "realness" of the generated speech.
Typically this is by surveying large crowds, using something like Mechanical Turk, however since
this was not feasible, MOSNet[10] was used to evaluate the audio files. The data was evaluated on a
test set of 40 speakers, with 310 voice conversion pairs that were generated across the test speaker set.

5.1 Neural Style Transfer using VGG-19 & VGGish

Both the VGG based experiments were run for 1000 iterations using pretrained weights. VGG-19
used weights pre-trained on Image Net, while VGGish used weights pre-trained on Audio Set. In
order for the 2D spectrogram to fit into the 3D Convolutional layers, the spectrogram is tiled for
each channel and rescaled to fit the network’s inputshape. For faster convergence, the generated
spectrogram was initialized to that of the content spectrogram. Ideally this would make the sound
resemble the original speech. The generated image was optimized using the Adam Optimizer with
parameters learning_rate=0.02, beta_1=0.99, epsilon=1e-1. The audio is reconstructed using the
Griffin Lim algorithm.

As seen in Figure 3 above, across all gender pairs, the VGG based methods produced dismal MOS
scores, an average of about 2.4/5. Despite being initialized to the content speech, the algorithm
produced very noisy clips. Some changes in volume and sound patterns indicated the algorithm was
attempting to extract some information.

For choosing the style and content layers some experimentation occurred. The content layer, following
the original Neural Style Transfer algorithm, was chosen to be the second to last Conv output (before
ReLU activation).

5.2 Neural Style Transfer using Shallow 1D-CNN

The Randomly Initialized CNN with a single 1D Convolutional layer approach was fairly straight
forward. The number of filters chosen for the 1D Convolutional layer was found to perform best
when 4096 filters were used. This is necessary to extract enough information out of the 1D audio
signal. The style audio STFT image is fed into the network to get the style vectors; while the content
audio STFT image is fed into the network to get the content vectors to create a gram matrices. In this
approach, it expects the size of the content and style matrices to have the same shape. In order to
address this, the data was zero padded.
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As seen in Figure 3 above, the Shallow CNN method performed comparably to the vGG-19/VGGish
based method, albeit slightly better.

Qualitatively, it was observed that in this method the audio sounded more meaningful, but generally
a noisier version of the original content audio clip. Style information did not get transferred much,
perhaps because the approach has a hard time differentiating between the vocal qualities of the two
speakers. See appendix for a visualization of the style transfer process, its clear from the figure that
the generated STFT image is very close to the original speaker’s STFT but with lots of noise added.

5.3 AutoVC

AutoVC was run for 300k iterations with and used an Adam Optimizer with parameters batch_size:
2, adam_beta1’: 0.9, adam_beta2: 0.999, adam_epsilon: 1e-8. The algorithm was re implemented in
Tensorflow 2.0. It achieved a final loss of around 0.0001, which is comparable to the loss achieved in
the original paper. The bottleneck size hyper parameter was experimented with between 16 and 32, it
was found that a bottleneck size of 32 performed the best. It was observed when the bottleneck size
is too small it results in an overly smooth signal, suggesting too much down sampling occurred at the
bottleneck.

As seen in Figure 3, the AutoVC algorithm performs the best achieving an average MOS score of
around 3.1/5. This matches the qualitative observations of the audio clip. The algorithm does a
good job in transferring speaker style information (i.e. converting a male voice to female), however
the content information is heavily lost, resulting in a lack of similarity to the original content audio
clip or source speaker’s utterance. Furthermore, the algorithm performs the worst in male to female
voice conversion and female to male voice conversion tasks, suggesting that maybe a lack of female
speakers were present in the speaker embedding dataset, the speaker embedding network used was
pretrained.

6 Conclusion & Future Work

Overall three different approaches were explored to see if voice conversion could be addressed
using generative techniques. First this paper explored the potential of treating the problem of voice
conversion as a style transfer problem. To establish a baseline, the Neural Style Transfer algorithm,
designed for images; both VGG-19 pretrained on ImageNet and VGGish pretrained on AudioSet were
explored as feature extractors. However, this approach produced very noisy results, with an average
MOS of approximately 2.5/5. Next, rather than treating audio as 3D images, the next approach
attempted was a Shallow randomly initialized CNN with 1D convolutional layer with many filters.
This produced slightly better results, doing better in some voice conversion types such as female
to male , and male to male voice conversion. An auto encoder-decoder framework was explored
based on AutoVC, which was re-implemented in TensorFlow. This algorithm produced much better
results, with a MOS range from 2.8-3.2 across all voice conversion tasks, performing the worst on
female to male voice conversion tasks. It was observed that in many of these clips the voice style
transfer completed successful but the content information was lost, so the actual similarity between
the generated audio and the original content speaker’s audio was lacking.

To further improve upon the results, better fine tuning of the content encoder in the AutoVC network
could be completed. Clearly the down sampling, which occurs in the network removes too much
content information in its attempt to strip the source speaker style, is too narrow. Widening the
bottleneck to sizes like 64 (vs the current 32 and 16 tried), might produce better results. Similarly,
recently in many audio and text related tasks, the Attention mechanism using LSTM has shown
promising results. Since audio information is sequential by nature, this could be a useful improvement
in the content encoder. Given more time, this may be the key to addressing the shortfalls of the
AutoVC network.

7 Contributions

I was the only member of the team.
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A Appendix

This is a detailed figure of the AutoVC network:

Figure 4: The AutoVC Network.

Figure 5: Input and Outputs from Neural Style Transfer applied using the Randomly Initialized CNN.

Figure 6: Inputs & Outputs from the AutoVC Network

Figure 7: From left to right: Content Loss, Initial Reconstruction Loss, Final Reconstruction Loss.
The AutoVC network was trained for 300k iterations. The original paper achieved a total summed
loss of 0.0001.
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