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1 Problem Description and Challenges

Natural language processing has come a long way and has made significant progress in the past
few years. This project attempts to explore and improve on the problem of searching through code
semantically through natural language queries. This is very useful as some people might want to
search through code written in a language that they are not familiar with. Furthermore, this may make
searching for particular code functions or snippets easier by avoiding the need for exact keyword
match. An interesting thing to note with this particular problem is that code is not natural language,
so this poses a challenge for this work.

2 Dataset

In this project, we only used a subset of the Code Search Net Corpus from [1], [2]. Recall that the
entire dataset contains approximately 2 million pairs, each consisting of a function (written in Python,
Java, Go, Javascript, PHP, or Ruby), and its documentation string (docstring). The subset of the data
we used consists of just the pairs written in Python, in addition to other (code, docstring) pairs. The
total amount of data we used here for training is about 800,000 points. The data is scraped from
popular GitHub repositories. A challenge in this problem, as mentioned in [2], is that a function’s
documentation might be biased in the sense that it is inherently different in purpose from the queries
that seek the function in question.
As discussed in Section 3, we essentially use BERT to create joint embeddings of code and docstrings,
and we use sequence classification as our surrogate task. The data is labelled 0/1, whether the given
code function and docstring are related, i.e., the docstring describes the function. The test-set data
is divided into batches, where each batch contains 1 million (code, docstring) pairs. Each batch is
further divided into groups of 1000 such pairs, where the first in the group is a "relevant" pair, and
the other 999 are "irrelevant" pairs.

3 Model

Recall that BERT is trained using a large corpus of data, but because the domain here is very specific,
we must perform pre-training in order for our BERT embeddings to work well. Recall that the
architectural idea of BERT is that it is in general a 12-layer neural network consisting of consisting
of transformer blocks and attention heads. In our project, we instead use the specialized RoBERTa
framework [8], the "robustly optimized BERT pretraining approach," which is an optimized version
of BERT that is trained using much more data. In particular, we fine-tune it to the classification
task outlined in the section above. Thus, the final layer of our modified RoBERTa is simply a linear
dense layer followed by a sigmoid. Note that a consequence of this task is a joint embedding of both
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Figure 1: A sequence w is input into the model, with w4 masked with the [MASK] token. The model
then outputs a prediction for w4.

programming language and natural language into the same vector space, which was just a hidden
state within the RoBERTa model.

The data is preprocessed as follows. Recall that each datapoint is a (code, docstring) pair. As done
with inputs to BERT, a [CLS] token is placed before the start of the string. Then, [SEP] tokens are
placed in between the code and docstring portions of the data and at the end of the text. Then, we use
the RoBERTa tokenizer to tokenize the text. See [6] for more details on how BERT tokenizes text
data. Also similar to BERT, we create masks of either 0’s and 1’s, as these are also parts of the input
to the model, intuitively, to "group" the tokens into the programming language group and the natural
language group. Finally, the tokens, masks, and labels are all used as inputs to the RoBERTa model.

The RoBERTa model in this project was pre-trained, as described in [1] in more detail. Similar to
how BERT was trained, the CodeBERT model in [1] was trained to optimize for two objectives: (i)
masked language modeling, and (ii) replaced token detection.

3.1 RoBERTa Pre-Training

In objective (i), about 15% of the tokens are masked, i.e., replaced with a special [MASK] token.
For each datapoint xi, suppose mi tokens were masked out, leaving a modified sequence of tokens
x̃i. The goal of the network pθ1 with parameters θ is to predict the tokens that were masked out by
minimizing the following loss function (which is just the negative log-likelihood):

L1(θ) = −
1

n

n∑
i=1

mi∑
j=1

log pθ1(ŷij |x̃i),

where ŷij denotes the predicted token for the j-th masked-out token in the i-th example. The general
model architecture for RoBERTa is shown in Figure 1, taken from [7]. Note that this is actually a
diagram for BERT but the idea is essentially the same.

Objective (ii) is similar to objective (i) but with the difference being that masked tokens are instead
replaced with different alternative tokens. In fact, this objective uses techniques similar to that of
GANs. Two generators, one for natural language, and the other for programming language, are used
to generate these alternative tokens, with a discriminator labelling whether each word is different than
the original or not (as opposed to real or fake).
For each example xi, suppose mi of its tokens were masked and changed to a different token by the
generators, yielding a modified sequence x̃i. Let xij denote the j-th token in the sequence xi, and let
δij = 1 if x̃ij 6= xij , and 0 otherwise. That is, δij is the indicator for whether the j-th masked token
in the i-th example indeed changed values. Let pθ2 denote the discriminator network, parametrized by
θ, that predicts the probability that a given masked token was changed to something different than the
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original. Its goal is to minimize the following loss function (just cross-entropy loss):

L2(θ) = −
1

n

n∑
i=1

mi∑
j=1

[
δij log p

θ
2(x̃ij) + (1− δij)(1− log pθ2(x̃ij))

]
.

We want the entire RoBERTa model, parametrized by θ, to be good at both of these tasks simultane-
ously, so the total objective function will be

L(θ) = L1(θ) + L2(θ).

3.2 RoBERTa Fine-Tuning

Unfortunately, this pre-trained model does not perform well on the task of code search. Fortunately,
however, all it takes is some fine-tuning on the labelled dataset, described in Section 2, to train a
better-performing network in the task of code search. This particular model had exactly 124,647,170
trainable parameters. We performed fine-tuning on this model with mini-batch gradient descent with
a batch-size of 100, an Adam optimizer, and 8 epochs. We used a learning rate of 1e-5 and an Adam
ε of 1e-8. In addition, we used a maximum sequence length of 50. That is, after tokenizing the
(code, docstring) string, we padded the sequence to length 50 with 0’s if the length was less than 50.
Otherwise, we truncated the tokenized sequence so that the final input sequence into the RoBERTa
model had 50 tokens. We took into account the lengths of the tokenized code and tokenized docstring
portions and removed tokens one-by-one depending on which portion was longer. This entire process
to fine-tune RoBERTa, with the given architecture and hyperparameters, took approximately 8 hours
on a small P3 AWS EC2 instance, which had only one NVIDIA Tesla GPU and 8 virtual CPUs.

4 Evaluation

Search engines indeed are scored using the mean reciprocal rank (MRR). If we have N queries,
where potential answers are ranked in order of relevance, then the MRR is defined as

MRR =
1

N

N∑
i=1

1

ranki
.

Thus, 0 < MRR ≤ 1. Using batch0 and batch1, we get MRRs of about 0.76 and 0.78, respectively.
This competes very well with the MRR reported in [1], which for Python was 0.8685. Note that,
according to [1], a CNN and a BiRNN give MRRs of about 0.57 and 0.32 for Python respectively.
Furthermore, the performance of the base pretrained RoBERTa network (before any fine-tuning)
gives MRRs of about 0.01 for batch0 and batch1.

Since each programming language is different, in order to extend this application to other pro-
gramming languages, we would need a different fine-tuned RoBERTa model for each. Indeed, the
performance of RoBERTa after fine-tuning seems to vary depending on the programming language.
From [1], for instance, this model gives an average MRR of 0.6926 for the Ruby programming
language. [1] also shows empirically that the joint tasks of masked language modelling and replaced
token detection improves the performance for each programming language

5 Analysis and Future Work

Clearly, we can move on to fine-tune RoBERTa on the other five programming languages to get a
better sense of its performance for general programming languages. Indeed, it may be possible to
perform a n-way joint embedding of natural language and programming language, for any given n−1
programming languages. I had initially hoped to build an application for this task, but unfortunately
due to my limited resources, this was not possible in the given timeframe. Thus, a clear future
goal, practically-speaking, is to build such an app that indeed takes in natural-language queries
and outputs code-snippets that are ranked by relevance. Furthermore, we can always continue to
explore more various types of architectures, and even simply test out/reproduce this work using the
simpler architectures such as nBOW, CNNs, or LSTMs, but it may be unlikely to perform better, both
theoretically and practically, than the BERT models shown here.
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As an analysis of results, the network we proposed here did not perform as well as the model proposed
and fine-tuned in [1]. However, there is no doubt that this recent work has made great progress and
achievement in this niche application. As mentioned above, the RoBERTa model fine-tuned here
already performs much better than the "traditional" architectures, including bag-of-words (nBOW),
CNN, BiRNN, and even Self-Attention. These model architectures gave average MRRs of about
0.58, 0.57, 0.32, and 0.69, respectively on Python test sets, according to Table 2 in [1]. Indeed, what
is interesting is that the Bidirectional RNN seems to perform the worst with respect to MRR among
all other models and architectures.

References

[1] Zhangyin Feng, Daya Guo, et. al. "CodeBERT: A Pre-Trained Model for Programming and
Natural Languages". In arXiv:2002.08155 (2020).

[2] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
"CodeSearchNet Challenge: Evaluating the State of Semantic Code Search". In: arXiv:1909.09436
(2020).

[3] Sean Robertson. "NLP From Scratch: Translation with a Sequence to Sequence Network and
Attention." From https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

[4] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, Satish Chandra. "When Deep Learning
Met Code Search". In arXiv:1905.03813 (2019).

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, Illia Polosukhin. "Attention is All You Need". In arXiv:1706.03762 (2017).

[6] Chris McCormick. "BERT Word Embeddings Tutorial". From
https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial

[7] Rani Horev. "BERT Explained: State of the art language model for NLP". From
towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

[8] Yinhan Liu, Myle Ott, et. al. "RoBERTa: A Robustly Optimized BERT Pretraining Approach".
In arXiv:1907.11692

4


	Problem Description and Challenges
	Dataset
	Model
	RoBERTa Pre-Training
	RoBERTa Fine-Tuning

	Evaluation
	Analysis and Future Work

