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I. Abstract

3D object detection systems have become a core com-
ponent in most of the recent autonomous vehicles systems.
Autonomous vehicles are required to precisely detect and
track the surrounding objects in real-time to achieve safe
driving. Among the various sensors used in recent autonomous
vehicles system, LiDAR, which measures distance between
objects and the ego-vehicle has become a crucial sensor for 3D
object detection systems. PV-RCNN [1] is a high-performing
pointcloud based 3D object detector. However, PV-RCNN’s
Two-stage detectors cannot adequately identify changing ob-
ject scales, differing point-cloud density and clutter issues. I
propose to introduce some changes in the module based on 2D
deformable convolution networks that can adaptively gather
instance-specific features from locations where informative
content exists. The results are based on KITTI dataset [2].

II. Introduction

3D Object Detection for self-driving cars is very challenging
due to the enormous amount of data involved and real-time
nature of the problem where the bar for the accuracy
and performance of the model is very high. LiDAR is an
important sensor in 3D detection system. It captures 3D
scene information as sparse and irregular pointclouds, which
provide vital cues for 3D scene perception and understanding.
State of the art detector, PV-RCNN [1] understands 3D
features from irregular cloud points. PV-RCNN achieves high
performance 3D object detection by integrating point-voxel
networks to learn 3D features from irregular pointcloud.
There are 2 categories of 3D object detection methods
based of point cloud representation, grid based (voxel based
features) and point based (point based features) methods.
Grid based method transforms irregular pointclouds to regular
representation like birdview maps which can be processed by
2D or 3D CNN. PointNet [3] extracts discriminative features
from raw point cloud for 3D detection. The disadvantage
of grid based method is it lacks fine grained localization
accuracy. This deficiency is addressed by point based method
which preserves accurate location information. PV-RCNN
combines both these feature learning schemes in 2 steps,
voxel to keypoint scene encoding and keypoint to grid
ROI feature abstraction. To understand keypoint, voxel-wise
feature learning scheme requires a large number of voxels to
generate accurate proposal, this is computationally inefficient.
Hence, Furthest Point sampling (FPS) algorithm is used to

select a small set of keypoints. The features of these keypoints
are aggregated by grouping neighboring voxel-wise features
via PointNet [3] set abstraction for summarizing multi-scale
point cloud information. Voxel-to-keypoint is a good way to
encode the whole scene.

Fig. 1. PV-RCNN framework.
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keypoint features to ROI grids for proposal confidence predic-
tion and location refinement.
PV-RCNN:Ss is efficient because it randomly sampled keypoints
which capture multi-scale features for proposal refinement
while retaining fine-grained localization information. How-
ever, in some situations random sampling is not effective in
case of pedestrians or traffic poles as they are very hard to
distinguish in point clouds. In this case, it would be better
to align the keypoints towards the most discriminative areas,
so that principal features for a pedestrian can be highlighted.
Similarly, the scales for cars, pedestrians and cyclists are very
different. While multi-scale feature aggregation is advanta-
geous for image features, the non-uniform density of point
clouds makes it hard to detect them with a single model. The
goal of the project is to aggregates and focus on the most
salient features at different scales and pick up on unevenly
distributed contextual information.

III. Literature Review

Prior to emergence of modern Convolutional Neural Net-
works (CNNs) architectures and large-scale image datasets
such as ImageNet [5], object detection was traditionally done
with hand-crafted features, such as HoG [3] or Haar [9]. Object
detection through CNNs was first done by using external
segmented objects [6], and later by using the Region Proposals
Networks (RPNs) [11].

For 3D Object Detection, there have been three approaches.
The first approach as in [7] and [8] (among many others) is



to estimate the spatial location of the objects based solely on
monocular visual information A second approach has been to
use both camera and LiDAR as complementary data sources
and combine the information as in [16]. In this data fusion
approach, RPN was used in [17] where regions of interest
and classification are computed on the image space, and final
location is performed over the LiDAR data.

The third approach to 3D Object Detection uses point
cloud data to compute object detections in 3D, either using
information from stereo cameras or LIDARs. Earlier examples
of this approach are [9] and [10]. A more recent approach for
processing the point cloud spatial data has been to convert the
3D space into a voxel grid and apply 3D convolutions [11]
[12] [13]. More recently, a more novel approach in the point
cloud category is to use 2D CNNs on LiDAR point cloud of
the front view [14] or a bird’s eye view (BEV) [15].

The Bird’s Eye View (BEV) projection of the LiDAR
data can be processed by either single- [29], [31] or two-
stage [21], [32] image detectors. Even processing of more
compressed (binary) representations of BEV projections have
been attempted by MODet [33].

The compactness of the BEV data enables the above meth-
ods to perform high speed processing for real-time applications
such as autonomous driving. However, due to the sparsity of
data and simplicity of the process, there is some information
loss, especially the height coordinate.

The Birdnet+ [34] alleviates these limitations by using
a two-stage object detector and ad-doc regression branches.
Thus eliminating a post processing stage. Birdnet+ provides
a mechanism for 3D box regression using only BEV images
as input. We based my project on this paper and to improve
the performance of the model. Since BirdsNet+ model lacks
precision of the bounding box as it combines the localization
and box regression together and classifies, we also studied how
to improve a 3D object detection performance by predicting
more precise 3D bounding box coordinates [36]. The objects
(car, cycle, pedestrian etc.), i.e, box regression module and
non-objects (localization) are classified independently. This
change in the object detection pipeline helps classify box
regression more precisely and improves the quality of the
boxes. It applies spatial transformation to each point cloud
points to improve precision.

3D Object Detection on LiDAR data is a rich growing
area of research, and new developments are happening
rapidly, One very interesting model is developed for
3D Video Object Detection using graph-based message
passing and spatiotemporal transformation attention [35].
In this project, an end-to-end online 3D video object
detector is built that operates on point cloud sequences.
An Attentive Spatiotemporal Transformer GRU (AST-GRU)
aggregates the spatiotemporal information to emphasize the
foreground objects, and Temporal Transformer Attention
(TTA) module aligns the dynamic objects. These attention-
aware spatiotemporal aggregation mechanisms capture the
video coherence in consecutive point cloud frame, which
yields an end-to-end online solution for the LiDAR-based 3D

video object detection.

IV. Data Set and Features

I performed experiments and benchmarking on KITTI
Dataset[2].The KITTI dataset has been recorded from a mov-
ing platform while driving in and around Karlsruhe, Ger-
many . It includes camera images, laser scans, high-precision
GPS measurements and IMU accelerations from a combined
GPS/IMU system There are 4 different types of files in
the dataset: camera_2 image (.png), camera_2 label (.txt),
calibration (.txt), and velodyne point cloud (.bin).

For each frame, there is one of these files with the
same name but different information. The image files are
regular .png files. The label files contain the bounding box
information for objects in 2D and 3D in text. Each row of
the file is one object and contains 15 values (for classes like
car, pedestrian etc.). The 2D bounding boxes are in terms of
pixels in the camera image . The 3D bounding boxes are in
2 coordinates. The size ( height, weight, and length) are in
the object coordinate, and the center of the bounding box is
in the camera coordinate. The point cloud file represents the
location of the point and its reflectance in the lidar coordinate.

PV-RCNN uses images as input to the model. I acquired
the publicly available KITTI object detection data set [2].
It consists of 7481 training images and 7518 test images,
comprising a total of 7518 labeled objects. The training
samples are generally divided into the train split (3,712
samples) and the val split (3,769 samples).

PV-RCNN experiments focused on three categories — car,
pedestrian, and cyclist.

V. Methods
Technical Approach

A. Overall PV-RCNN architecture

Unlike RGB images, LiDAR point clouds are 3D, unstructured
and include the coordinates in meters and the intensity value
from the reflected beam, these are the features of the input
points.

PV-RCNN uses keypoints to integrate two point cloud feature
learning strategies namely, point-cloud set abstraction and
voxel-based sparse convolution. It also bridges the RPN and
RCNN stage. It uses 3D Voxel CNN for feature encoding and
proposal generation. All the input points in the pointcloud
are first converted into small voxels where the features of
the non-empty voxels are directly calculated as the mean of
point-wise features of all inside points. The network utilizes
a series of 3 x 3 x 3 3D sparse convolution to gradually
convert the point clouds into feature volumes with 1x,2x, 4x,
8x downsampled sizes. Such sparse feature volumes at each



level could be viewed as a set of voxel-wise feature vectors.
3D proposal generation: the encoded 8x downsampled 3D
feature volumes are converted into 2D bird-view high-quality
3D proposals are generated following the anchor-based
approaches. PV-RCNN stack the 3D feature volume along
the Z axis to obtain the L 8 x W 8 bird-view feature maps.
Each class has 2x L. 8 x W 8 3D anchor boxes which adopt
the average 3D object sizes of this class, and two anchors of

0°,90°

orientations are evaluated for each pixel of the bird-view
feature maps.

PV-RCNN uses a two-stage approach to combine the
two algorithms described above. voxel-to-keypoint scene
encoding step proposes proposals. voxel method extracts
feature for the entire scene using point FPS(further point
sampling) and retrieves features of multi-scale voxel. This
actually only uses the characteristics of voxel, but it is
expressed in key-point. The second stage is’keypoint-to-grid
Rol feature abstraction’: In this step, Rol-grid pooling module
combines the characteristics of keypoints and Rol-grid points
of the previous step Fusion. Then, the aggregated features of
all Rol-grid points are used together for subsequent proposal
optimization.

The figure (fig.2) below shows the PC-RCNN overall
architecture- The raw pointclouds are first voxelized to
feed into the 3D sparse convolution based encoder to
learn multi-scale semantic features and generate 3D object
proposals. Then the learned voxel-wise feature volumes at
multiple neural layers are summarized into a smallset of
keypoints via the novel voxel set abstraction module. Finally
the keypoint features are aggregated to the Rol-grid points
to learn proposal specific features for fine-grained proposal
refinement and confidence prediction.

Fig. 2. PV-RCNN over all architecture.

3D Sparse Convolution
N

[585 , [/f][jjju
g [//E:][/Ej A

i s s i
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3D sparse convolution processing of voxel has obtained
relatively accurate proposals, but there are many The
characteristics of the scaled keypoint needs refinement.
PV-RCNN proposes keypoint-to-grid Rol feature abstraction
module at this stage. as follows:

To group keypoint features for proposal refinement, a Rol-grid
pooling via set abstraction is employed. It aggregates the
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keypoint features to the Rol-grid points. As shown in the
figure (fig 3), the red dot represents the grid point, the
light yellow represents the KeyPoint, and the dark yellow
represents the original point.

Using the grid points as the center, set a variable radius
to aggregate the features of nearby KeyPoints, regularize the
features of KeyPoints, and turn them into Voxel-type features
again. There are two advantages to doing this: 1. When
extracting Voxel features, you can collect the information of
the object boundary outside the frame, which is good for
the refinement of the recommended frame. 2. Greatly reduce
0 value features and reduce the sparsity of feature space.
PV-RCNN samples 6x6x6 grid points in each proposal. First
determine the neighbors within a radius of each grid-point,
and then use a pointnet module to integrate the features
For the characteristics of grid point, feature fusion means
of multiple scales will be used here. After getting all the
grid-point point features, PV-RCNN uses two layers of MLP
to get the characteristics of 256-dimensional proposals.
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B.Proposed Architectural modification

Technique applied in Mesh-RCNN [4] can be used to
deform keypoints in PV-RCNN. Adaptive deformation module
adaptively aligns keypoints towards the most content rich and
discriminative features. The n sampled keypoints (shown in
yellow in Fig. 2) have a 3D position v; and a feature vector
fi corresponding to any 4 Conv layers as shown in fig2. This
module will compute updated features fi'

fi = /m)RELU( " Woppser(fi — f)-(vi — v)))

JEN ()



where NN; gives the i-th keypoint’s neighbors in the point-cloud
and Wy rser is a learned weight matrix. The new deformed
keypoint positions as

where W4y is a learned weight matrix [4].

Fig. 4. deformation module.
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To compute the features for the deformed keypoints using
PointNet++ similar to the PV-RCNN pipeline. Ref fig.2, the
sample keypoints passed through gated CNN [40] (not shown
in the fig. 2) to voxel set abstraction module. Gating block,

Fig. 5. Gated Linear Unit with residual connection.
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Dauphin et al. [40], uses a mechanism called a “gated linear
unit” (GLU), which involves element-wise multiplying A by
sigmoid(B),

A ® sigmoid(B)

. Here, B contains the ‘gates’ that control what information
from A is passed up to the next layer in the hierarchy. Concep-
tually, the gating mechanism allows selection of the keypoint
features that are uncluttered and only refined keypoints are
passed to voxel set abstraction module, and provides a mecha-
nism to learn and pass along just the relevant keypoint features.
Similar to ReLU, the gating mechanism also provides the
layer with non-linear capabilities, while providing a linear path
for the gradient during backpropagation (thereby diminishing
the vanishing gradient problem). Using this concept, Given a
keypoint feature f;, the gated feature is obtained as function g
= sigmoid(Wyqte fi + bgate) and modified feature of a keypoint
is [ =g ®Wy fi

Where the Wy, Wyaie and bgqee are learned from data.
This function is applied to all the sample keypoint features and
the gated features are passed on to the voxel set abstraction
module.

C. Loss function
3D Proposal Refinement and Confidence Prediction The author
uses the 3D Intersection-over-Union (IoU) proposed by the
predecessors in the confidence prediction branche. The confi-
dence goal for the k;, ROI is the following formula:

yr = min(l, max(0,2I0U; — 0.5))

where IoUj is the IoU of the k;, Rol w.r.t. its ground-truth
box.

This formula represents the GT corresponding to the ki
ROI, so the LOSS function of the confidence prediction branch
uses cross-entropy loss:

Liow = —yilog(yp®) — (1 — y) (1 — log(yp™))

hat

where 3;*" is the predicted score by the network.

Training loss RPN loss

LTp’YL = Lcls + ﬂ( Lsmooth(Almt Ar“))

re

>
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PV-RCNN framework is trained end-to end with the region
proposal loss L,,,, keypoint segmentation loss L., and the
proposal refinement 10ss Ly.cpp,.

where the anchor classification loss L. is calculated
with focal loss with default hyper-parameters and smooth
L1 loss is utilized for anchor box regression with the predicted

Keypoint seg loss is the weight loss of the key points
in the front background refinement loss is defined as follows:

>

rex,y,z,l,h,w,0

Lsmooth (Ahat AT'“ )

L’rann = Liou + e

The overall training loss are then the sum of these three
losses with equal loss weights. Further training loss details
are provided in the supplementary file.

VI. Results from Experiments

The 3D object detection benchmark of KITTI [3] contains
7481 training samples. Following [1], we divide them into
3712 training samples and 3769 validation samples. Report
results are on the validation (val) split of KITTIL.

Network Architecture. As shown in Fig. 2, the 3D voxel
CNN has four levels with feature dimensions 16,32,64,64,
respectively. Their two neighboring radii rk of each level
in the VSA module are set as (0.4m,0.8m), (0.8m,1.2m),
(1.2m,2.4m), (2.4m,4.8m), and the neighborhood radii of set
abstraction for raw points are (0.4m,0.8m). For the proposed
Rol-grid pooling operation, we uniformly sample 6x6x6 grid
points in each 3D proposal and the two neighboring radii ~ r
of each grid point are (0.8m,1.6m). For the KITTI dataset, the



detection range is within [0,70.4]m for the X axis, [40,40]m
for the Y axis and [3,1]m for the Z axis, which is voxelized
with the voxel size (0.05m,0.05m,0.1m) in each axis.

Experiment Summary

Training and Inference Details: PV-RCNN framework is
trained with the ADAM optimizer. Trained the entire network
with the batch size 4, learning rate 0.01 for 15 epochs on 1
AWS Tesla GPUs, which takes around 20 hours. Batch size
more than 4 run into out of memory issue. 15 epoch took ab
20hrs.

The following table summarizes experimentation. moderate
level of KITTI val split with AP calculated calculated by 40
recall positions. For the proposal refinement stage, PV-RCNN
randomly sample 128 proposals with 1:1 ratio for positive
and negative proposals, where a proposal is considered as a
positive proposal for box refinement branch if it has at least
0.55 3D IoU with the ground-truth boxes, otherwise it is
treated as a negative proposal, this is the default setup and this
has not been changed for the test. All results are evaluated
for ToU threshold 0.7 for cars and 0.5 for pedestrian and
cyclists, this is the default setup and it hasn’t been changed
in this test.

All the values are in %

VII. Challenges

To Trained the entire network, I tried AWS instance with 4
Tesla M-60 GPUs. However, the PV-RCNN code is does not
support multi-gpu on AWS instance [41]. So tried to modify
the train.py, the training did not work in multi-GPU setup and
started throwing GPU out of memory error. I spent a lot of
time to fix the issue and also reached out to PV-RCNN author,
but the issue couldn’t be fixed. So I used 1 GPU AWS instance
with batch-size 4 and 15 epochs, this took about 20hrs for each
run. A number of more tests could have been conducted for
for easy, moderate and hard setup for various combinations of
deformations. Due to compute issues, I did only 3 set of tests
as discussed.

VIII. Future Enhancements

Improve AWS integration of PV-RCNN.
Improve the keypoint encoding to detect smaller objects like
small dog, human in sitting position and to detect small objects
lying on road. This will require more training data.
IX. Team Member Contribution

I am the only contributor to this project.

X. Github

Modified PV — RCNN
https://github.com/suvasis/cs230

experiment Car Pedestrian Cyclist Comment
PV-RCNN 823  66.6 533 baseline
modified-PV-RCNN  82.37 66.8 53.3 test1
modified-PV-RCNN  82.33  66.8 53.5 test2
modified-PV-RCNN  82.36  66.9 54.3 test3

baseline - PV-RCNN baseline rerun on the environment
described above.

testl - modified PV-RCNN only conv3 and conv4 features
are deformed

test2 - modified PV-RCNN convl, conv2, conv3 and conv4
features are defornmed

test3 - conv3 and conv4 features are deformed and also the
keypoints gating turned on as described in section V (B).

Comparison with state-of-the-art methods The
proposed deformation of keypoints encoding in, testl, with
respect to conv3 and conv4 improves performance for
pedestrian and car as pompared to PV-RCNN baseline. In,
test2, convl, conv2,conv3 and conv4 keypoints encoding
have been considered, this has improved car, pedestrian and
cyclist as pompared to PV-RCNN baseline. Finally, in test3,
deformed keypoints encoding are considered for conv3 and
conv4 and also the sample keypoints were gated for further
refinement as discussed in section V(B), this has resulted in
slight improvement in pedestrian performance and also car.
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