
Auto Doodling Using Generative Modeling
CS230 Final Project Report

1 st Yiting Zhang
 KLA Corp.

Milpitas, CA 95035, USA
yizhan@stanford.edu

2 nd Tuo Shi
KLA Corp.

Milpitas, CA 95035, USA
tshi86@stanford.edu

3 rd Xinhua Ren
Google

Mountain View, CA 94043, USA
xinhua19@stanford.edu

Abstract —Two generative adversarial networks were

applied to generate human sketches based on the Quick, Draw!
dataset. With the additional loss function, Auxiliary Classifier
GAN (AC-GAN) was found to have better performance in
generating high quality fake images, while conditional GAN
(C-GAN)’s outputs retained a certain level of blurry and
discontinuity. With learned knowledge through the course,
sampling truncation trick was applied to generate samples
with high fidelity. Fréchet inception distance (FID) and
kernel inception distance (KID) were used as evaluation
metrics to compare all trained models and their scores in
general match with human intuition.

 Keywords—GAN, image generative model, FID, KID,
Truncation Trick

I. I NTRODUCTION
Generative Adversarial Networks (GANs) are attracting

more attention nowadays. Researchers have made
substantial progress on both the theory and applications. A
large number of GAN variants have been introduced for
artificially generating high-quality images, videos and
audio.

Learning sketch that shows interesting features of
something observed is an essential training in helping young
children perform fundamental visual analysis of everyday
spaces and improve hand-eye coordination.[1] However, not
every parent can teach sketch or provide various sketch
examples on the same object. Thus, we want to utilize the
neural network’s generative modeling ability to create an
auto doodling bot which can generate numerous sketches
based on specified categories and thus help in early
education.

 In order to generate a sketch based on its category, a
conditional GAN model is required. In this paper, two
classic GAN models which generate a fake sample with at a
specific condition, are implemented according to their
published literatures[2, 3] The first conditional version of
GAN (c-GAN) was introduced by Mirza et al. in 2014. [2]
The authors added an additional input layer with values of
one-hot-encoded images labels to train a generator with
image tagging ability. Auxiliary classifier GAN (AC-GAN)
[3]shares samilary in principle to the C-GAN. Unlike
C-GAN, the input to AC-GAN’s discriminator is an image,
while it outputs the probability of whether the image is real
and its predicted classification as shown in Figure 1.

Figure 1. A comparison of different network architectures: GAN,
C-GAN and AC-GAN (image borrowed from [4])

II. D ATASET
This project uses ten manual selected sketch categories

from the Quick, Draw! Dataset, which contains 50 million
human drawings across 345 categories . [5] It is a unique and
world largest doodling dataset, which has helped deep
learning researchers observe patterns in how people around
the world draw, as well as helped artists create innovative
artworks. Each category contains 12,800 sketches and thus
the training dataset contains a total of 128,000 images. Five
samples from each category are shown in Figure 2.

Figure 2. Training samples in selected ten categories:(left to right)
banana, bowtie, cello, diamond, eyeglasses, flower, laptop, star,
sun and zigzag

A. Preprocessing
The open-sourced dataset has been preprocessed and

split into different formats to ensure fast and convent
application and exploration. For this project, we are
interested in the final drawing of all strokes and thus can
omit the drawing sequence recorded inside the full raw data.

1

mailto:yizhan@stanford.edu
mailto:tshi86@stanford.edu
mailto:xinhua19@stanford.edu
https://github.com/googlecreativelab/quickdraw-dataset/blob/master/categories.txt

We plan to use the simplified drawings which have been
rendered into a 28 x 28 grayscale bitmap in numpy format.

B. Dataset cleaning
After we examined our preliminary generator outputs,

we are unsatisfied with the model outputs and suspect its
due to a certain amount of low quality / mis labelled data in
our dataset. By inspecting the dataset, each category
contains 2-10% drawings that are unfinished or mislabelled.
We consider those data as low quality noisy training data
and decide to manually remove them from the training set.
Even with a team of three, manually checking 128,000
images is too much workload and thus we decide to shrink
our clean dataset to 12,800. Table I. Summariad our manual
low quality image counts on the first 1700 images in each
catagory.

TABLE I. L OW Q UALITY I MAGE C OUNTS

 As this part of data cleaning work has just finished

right before the milestone report due time, all model results
shown in this report were trained with raw dataset which
contains bad images.

III. GAN MODELS AND DISCUSSIONS
A. C-GAN base model and preliminary result

Considering the image shape is relatively small (28, 28)
with a single channel, a simple C-GAN architecture is
chosen for this project. In order to make the architecture
clear, Figure 3 shows a plot of the generator model (right)
and the discriminator model (left). Inside the discriminator
model, a second input is added to take an integer for the
class label of the image. This has the effect of generating the
input image conditional on the given class label. The class
label is then passed through an embedding layer with size of
10. This means that each of the 10 classes (0 through 9) will
map to a different 10-element vector representation that will
be learned by the discriminator model. The output of the
embedding is then passed to three fully connected hidden
layers with leaky Relu activation. We used tanh and sigmoid
as output layers for the generator and discriminator,
respectively. The cost of C-GAN is similar as GAN:

,where D(x|y) and G(z|y) demonstrates we are
discriminating and generating an image given a label y .

Figure 3. C-GAN network graph: generator (right) and
discriminator (left)

The C-GAN model is trained with batch size 128 and
total 300 epochs. In the initial stage of training, we observed
larger variation of both generator and discriminator loss, and
noticed the continuous quality improvement in the
generated images. When the training exceeded 100 epoches,
we noticed the model close to converge, with both D, G loss
remaining much smaller variation and no significant
improvement in terms of fake image quality. Figure 4.
shows generated images at epoch 300. It is clear that the
fake image is much noisier and blurry compared to the real
images. We suspect two potential root causes: inconsistent
data quality as discussed in Sec II. B and model architecture
may be too simple that the model is now having a high bias
issue.

2

Category Counts Presentence Ratio

banana 146 8.6%
bowtie 104 6.1%
cello 173 10.2%

diamond 101 6.0%
eyeglasses 109 6.4%

flower 47 2.8%
laptop 74 4.4%
star 114 6.7%
sun 45 2.6%

zigzag 74 4.4%

Figure 4. C-GAN generated images at epoch 300

B. AC-GAN base model and preliminary result
In addition to the C-GAN base model, an AC-GAN

model is developed to improve generated image quality.
Table II below shows the network architecture of its
generator model.

TABLE II. AC-GAN G ENERATOR M ODEL A RCHITECTURE

The discriminator module is defined by totally 14 layers

with repeat user defined block patterns. The general pattern
of each block is defined as following flow:

Conv2d → LeakyRelu → Dropout →
Batchnorm(optional)

The conv2d layer is a 2d convolution layer with filter
size = 3, stride = 2 and padding = 1. The LeakyRelu alpha
factor is set to 0.2 as a constant. The probability to keep an
element is 0.75 in the dropout layer. The input for this user

defined block is input filter number, output filter number
and boolean flag for batchnorm.

The discriminator neural network is defined as shown in
following table:

TABLE III. D ISCRIMINATOR N EURAL N ETWORK L AYER
S TRUCTURE

The output of the above neural net is used to generate

validation prediction and label prediction. The validation
prediction layer consists of a linear layer followed by
sigmoid activation. The label prediction layer consists of a
linear layer followed by softmax activation.

Figure 5. AC-GAN Generator and Discriminator training loss plot
of 100 epoch.

Both Generator and discriminator loss is shown in
Figure 5. It clearly shows that both generator loss and
discriminator loss oscillates and does not converge.

3

Layer Type Parameters Output
Dimension

Embedding
Layer

class#: 10;
input size:(1,100)

(1,100)

Linear (1,128*8*8)

Reshape (1,128,8,8)

BatchNorm (1,128,8,8)

Upsample factor = 2 (1,128,16,16)

Conv2d channel = 128 ， filter = 3,
stride = 1, padding = 1

(1,128,16,16)

BatchNorm (1,128,16,16)

LeakyRelu alpha = 0.2 (1,128,16,16)

Upsample factor = 2 (1,128,32,32)

Conv2d channel = 64 ， filter = 3,
stride = 1, padding = 1

(1,64,32,32)

BatchNorm (1,64,32,32)

LeakyRelu alpha = 0.2 (1,64,32,32)

Conv2d channel = 1 ， filter = 3,
stride = 1, padding = 1

(1,1,32,32)

Tanh (1,1,32,32)

Layer Type Parameters Output Dimension

block input filter = 1
output filter = 16
batchnorm disabled

(1,16,16,16)

block input filter = 16
output filter = 32
batchnorm enabled

(1,32,8,8)

block input filter = 32
output filter = 64
batchnorm enabled

(1,64,4,4)

block input filter = 64
output filter = 128
batchnorm enabled

(1,128,2,2)

Figure 6. AC-GAN Generated images at the first epoch and epoch
100.

The randomly generated doodle drawings are shown in
Figure 6. Ten different categories are separated in 10
columns. The comparison shows that the generator
generates fake images with very poor quality at its initial
stage. After 100 epochs of training, the generator generates
doodle drawing with similar quality as input image data
based and shows clear signature of different categories.
More details regarding GAN models comparison and
evaluation are discussed in Sec. IV.

C. C-GAN model improvements with data cleaning and

hyperparameter tuning
Compared with the AC-GAN outputs, our C-GAN

model shows much weaker performance. The team suspects
the large presentence of low quality data may contribute to
this and thus create a cleaned dataset with ten times smaller
amount as test force. Without adjusting the model
architecture and hyperparameter but just using the cleaned
dataset, the model does show improvement with human
evaluation and this lately got confirmed with our
evaluations with the Fréchet Inception Distance (FID) and
Kernel Inception Distance (KID) scores . We only obtain
1.67 reduction in FID and 5.57 reduction in KID compared
with the model trained with raw dataset. One potential
reason data cleaning only plays a subtle role in model
improvement is that while we cleaned up the dataset, we
also cut a large amount (- 90%) of the dataset due to lack of
algorithm to automate the cleaning process. As shown in
Figure 7, the team noticed that the banana category benefits
the most with data cleaning as its raw dataset contains the
second largest noise data and its drawing’s relative
simplicity may suffer the most of noise data impact.

Figure 7. Comparison of generated images with model trained with
raw dataset (left) and clean dataset (right). Red boxes marked
human unrecognizable fake images.

In addition to the data cleaning, the team tried
hyperparameters tuning with adjusting batch size, adding
batch norm layer, adjusting dropout probabilities as well as
adjusting learning rate. Unfortunately, none of the
mentioned techniques works well in our model tuning. For

certain parameter adjustments from the suggested default
value, we even observe a worsen result. For the concern of
content limitation and most importantly our reader’s time,
those failed attempts and outputs are skipped in this report.

D. Truncation Impact

With no luck in hyperparameter tuning, the team applied
the truncation trick on our C-GAN clean data model. The
truncation trick is a latent sampling procedure for generative
adversarial networks, where generator noise is sampled
from a truncated normal (where values which fall outside a
range are resampled to fall inside that range). Its original
implementation was reported in Megapixel Size Image
Creation with GAN [6]. In BigGAN , the authors found that
truncation provided a boost to the Inception Score and FID
by allowing fine control over the trade-off between sample
fidelity and variety.[7]

During the training, The generator noise is trained with
sampling from normal distribution N (0, 1). After the
training, if we sample more around zero with a largely
truncated normal distribution, our generator produces high
quality less diversified images (high fidelity sampling at
truncation-0.7). With more noise sampled towards
distribution tails, we start to see low quality images with
truncation-0.25. The fidelity of these images becomes
lower due to our generator unable to get its weights to make
that noise vector into a beautiful realistic image. it fails to
collect as much feedback on its realism on those noise
vectors sampled from these regions during training.

Figure 8. Impact of image quality with truncation level. Value
more close to 0 indicates more less truncation in the distribution
tail and its distribution more close to normal distribution. The red
box marked a human unrecognizable fake image.

4

https://paperswithcode.com/paper/megapixel-size-image-creation-using
https://paperswithcode.com/paper/megapixel-size-image-creation-using
http://paperswithcode.com/method/biggan

IV. M ODEL E VALUATION
Evaluating the quality of GAN model outputs is an open

and difficult problem. Two metics, FID and KID, are
selected to evaluate the quality of images generated by
generative adversarial networks, and lower scores have been
shown to correlate well with higher quality images.

The Fréchet Inception Distance (FID), invented by
Heusel et al. [8] measures the similarity of the samples’
representations in the classic Inception-V3 object detection
architecture to those of samples from the target distribution.
The FID fits a Gaussian distribution to the hidden
activations (for this project, we use the pool3 layer, of
dimension 2048) for each distribution and then reports the
Fréchet distance as FID scores. One major problem the
team faces while applying the FID evaluation is that FID
estimates exhibit strong bias for sample n even up to 10,000.
As the major computation pipeline is built on Google Colab
and accessing large mount data on mounted google drive
can be extremely difficult and slow. We tried our best to
evaluate model samples with 10K, but still not certain if the
sample amount is sufficient enough. For comparison and
confirmation of the evaluation, we also applied Kernel
Inception Distance (KID) as a secondary evaluation metric.
KID estimates are unbiased, and standard deviations shrink
quickly even for small n in thousands range. Binkowski et
al. [9] used a polynomial kernel to avoid correlations with
the objective of Maximum Mean Discrepancy GANs as well
as to avoid tuning any kernel parameters. In addition to
distribution mean and variance, KID also computes
skewness. Table IV summarizes our four GAN models’
FID (with 10K samples) and KID (with 1K samples) scores.
AC GAN gets the highest FID score with its sharp outline
while C-GAN-Clean data scores highest for KID. The team
think this may be due to KID credits outputs’ shape
similarity more. Although the team likes the samples
generated with truncation better, its scores are very close to
non-truncated C-GAN clean data. This may reflect the
tradeoff between fidelity and diversity while scoring.

TABLE IV. M ODELS ’ FID KID S CORES

V. C ONCLUSION
Two GAN models were implemented and compared

through this work. Although neither of them is great enough
to successfully produce a human unrecognizable replica, the
team got a chance to learn and understand the model
architectures in detail. Data cleaning and sampling
truncation are found two major knobs in improving fake
images’ quality. Evaluating the models is a hard task for the
team as none has used the dataset for GAN. Despite lack of
comparable work from literature, FID and KID scores are
computed and found in general align with human
judgement.

R EFERENCES

[1] https://kidscountryinc.com/2016/07/21/6-benefits-drawi
ng-time-children/

[2] arXiv:1411.1784
[3] arXiv:1610.09585
[4] arXiv:1710.10564
[5] https://github.com/googlecreativelab/quickdraw-dataset
[6] arXiv:1706.00082
[7] arXiv:1809.11096
[8] arXiv:1706.08500
[9] arXiv:1801.01401

C ONTRIBUTIONS

Yiting Zhang worked on data pre-processing, data
cleaning, C-GAN model setup and training , model quality
improvement and generated images evaluation.

Tuo Shi worked on building and training two ACGAN
models. The initial model was unsuccessful due to the
concatenate method for the input noise source and one hot
representation of image class. To fix the problem, another
ACGAN model was trained by implementing an embedding
layer in the generator model. The latter ACGAN model
generates images with high quality.

Xinhua Ren worked on coding for preliminary models
implementation and development, and wrote technique
points in the report.

APPENDIX. A

The project code repository is located at:
https://github.com/yitingz/AutoDoodling

5

 Sample Image FID-10K KID-1K

Real Image

0. 0.

C-GAN
-Raw Data

62.80 10.31

C-GAN
-Clean Data

61.13 4.74

C-GAN
-Truncation0.5

63.96 4.84

AC-GAN

41.21 5.86

https://github.com/yitingz/AutoDoodling

