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Abstract —Two  generative  adversarial  networks  were       

applied  to  generate  human  sketches  based  on  the  Quick,  Draw!            
dataset.  With  the  additional  loss  function,  Auxiliary  Classifier          
GAN  (AC-GAN)  was  found  to  have  better  performance  in           
generating  high  quality  fake  images,  while  conditional  GAN          
(C-GAN)’s  outputs  retained  a  certain  level  of  blurry  and           
discontinuity.  With  learned  knowledge  through  the  course,        
sampling  truncation  trick  was  applied  to  generate  samples          
with  high  fidelity.   Fréchet  inception  distance  ( FID)  and          
kernel  inception  distance  (KID)  were  used  as  evaluation          
metrics  to  compare  all  trained  models  and  their  scores  in            
general   match   with   human   intuition.     

  Keywords—GAN,  image  generative  model,  FID,  KID,         
Truncation   Trick   

  

I. I NTRODUCTION   
Generative  Adversarial  Networks  (GANs)  are  attracting        

more  attention  nowadays.  Researchers  have  made        
substantial  progress  on  both  the  theory  and  applications.  A           
large  number  of  GAN  variants  have  been  introduced  for           
artificially  generating  high-quality  images,  videos  and        
audio.     

Learning  sketch  that  shows  interesting  features  of         
something  observed  is  an  essential  training  in  helping  young           
children  perform  fundamental  visual  analysis  of  everyday         
spaces  and  improve  hand-eye  coordination.[1]  However,  not         
every  parent  can  teach  sketch  or  provide  various  sketch           
examples  on  the  same  object.  Thus,  we  want  to  utilize  the             
neural  network’s  generative  modeling  ability  to  create  an          
auto  doodling  bot  which  can  generate  numerous  sketches          
based  on  specified  categories  and  thus  help  in  early           
education.   

 In  order  to  generate  a  sketch  based  on  its  category,  a              
conditional  GAN  model  is  required.  In  this  paper,  two           
classic  GAN  models  which  generate  a  fake  sample  with  at  a             
specific  condition,  are  implemented  according  to  their         
published  literatures[2,  3]  The  first  conditional  version  of          
GAN   (c-GAN)   was   introduced   by   Mirza    et   al.    in    2014.    [2]   
The  authors  added  an  additional  input  layer  with  values  of            
one-hot-encoded  images  labels  to  train  a  generator  with          
image  tagging  ability.  Auxiliary  classifier  GAN  (AC-GAN)         
[3]shares  samilary  in  principle  to  the  C-GAN.  Unlike          
C-GAN,  the  input  to  AC-GAN’s  discriminator  is  an  image,           
while  it  outputs  the  probability  of  whether  the  image  is  real             
and   its   predicted   classification   as   shown   in   Figure   1.  
  

  

  
Figure  1.  A  comparison  of  different  network  architectures:  GAN,           
C-GAN   and   AC-GAN   (image   borrowed   from   [4])   
  

II. D ATASET   
This  project  uses  ten  manual  selected  sketch  categories          

from  the  Quick,  Draw!  Dataset,  which  contains  50  million           
human  drawings  across  345  categories .  [5]  It  is  a  unique  and            
world  largest  doodling  dataset,  which  has  helped  deep          
learning  researchers  observe  patterns  in  how  people  around          
the  world  draw,  as  well  as  helped  artists  create  innovative            
artworks.  Each  category  contains  12,800  sketches  and  thus          
the  training  dataset  contains  a  total  of  128,000  images.  Five            
samples   from   each   category   are   shown   in   Figure   2.   

  

  
Figure  2.  Training  samples  in  selected  ten  categories:(left  to  right)            
banana,  bowtie,  cello,  diamond,  eyeglasses,  flower,  laptop,  star,          
sun   and   zigzag     

A. Preprocessing   
The  open-sourced  dataset  has  been  preprocessed  and         

split  into  different  formats  to  ensure  fast  and  convent           
application  and  exploration.  For  this  project,  we  are          
interested  in  the  final  drawing  of  all  strokes  and  thus  can             
omit  the  drawing  sequence  recorded  inside  the  full  raw  data.            
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We  plan  to  use  the  simplified  drawings  which  have  been            
rendered   into   a   28   x   28   grayscale   bitmap   in   numpy   format.   

B. Dataset   cleaning     
After  we  examined  our  preliminary  generator  outputs,         

we  are  unsatisfied  with  the  model  outputs  and  suspect  its            
due  to  a  certain  amount  of  low  quality  /  mis  labelled  data  in               
our  dataset.  By  inspecting  the  dataset,  each  category          
contains  2-10%  drawings  that  are  unfinished  or  mislabelled.          
We  consider  those  data  as  low  quality  noisy  training  data            
and  decide  to  manually  remove  them  from  the  training  set.            
Even  with  a  team  of  three,  manually  checking  128,000           
images  is  too  much  workload  and  thus  we  decide  to  shrink             
our  clean  dataset  to  12,800.  Table  I.  Summariad  our  manual            
low  quality  image  counts  on  the  first  1700  images  in  each             
catagory.     

  

TABLE I. L OW    Q UALITY    I MAGE    C OUNTS   

  
 As  this  part  of  data  cleaning  work  has  just  finished             

right  before  the  milestone  report  due  time,  all  model  results            
shown  in  this  report  were  trained  with  raw  dataset  which            
contains   bad   images.     

  

III. GAN    MODELS    AND    DISCUSSIONS   
A. C-GAN   base   model   and   preliminary   result   

Considering  the  image  shape  is  relatively  small  (28,  28)           
with  a  single  channel,  a  simple  C-GAN  architecture  is           
chosen  for  this  project.  In  order  to  make  the  architecture            
clear,  Figure  3  shows  a  plot  of  the  generator  model  (right)             
and  the  discriminator  model  (left).  Inside  the  discriminator          
model,  a  second  input  is  added  to  take  an  integer  for  the              
class  label  of  the  image.  This  has  the  effect  of  generating  the              
input  image  conditional  on  the  given  class  label.  The  class            
label  is  then  passed  through  an  embedding  layer  with  size  of             
10.  This  means  that  each  of  the  10  classes  (0  through  9)  will               
map  to  a  different  10-element  vector  representation  that  will           
be  learned  by  the  discriminator  model.  The  output  of  the            
embedding  is  then  passed  to  three  fully  connected  hidden           
layers  with  leaky  Relu  activation.  We  used  tanh  and  sigmoid            
as  output  layers  for  the  generator  and  discriminator,          
respectively.   The   cost   of   C-GAN   is   similar   as   GAN:   

  

,where  D( x|y )  and  G( z|y )  demonstrates  we  are         
discriminating   and   generating   an   image   given   a   label    y .   

  

  
Figure  3.  C-GAN  network  graph:  generator  (right)  and         
discriminator   (left)   

  

The  C-GAN  model  is  trained  with  batch  size  128  and            
total  300  epochs.  In  the  initial  stage  of  training,  we  observed             
larger  variation  of  both  generator  and  discriminator  loss,  and           
noticed  the  continuous  quality  improvement  in  the         
generated  images.  When  the  training  exceeded  100  epoches,          
we  noticed  the  model  close  to  converge,  with  both  D,  G  loss              
remaining  much  smaller  variation  and  no  significant         
improvement  in  terms  of  fake  image  quality.  Figure  4.           
shows  generated  images  at  epoch  300.  It  is  clear  that  the             
fake  image  is  much  noisier  and  blurry  compared  to  the  real             
images.  We  suspect  two  potential  root  causes:  inconsistent          
data  quality  as  discussed  in  Sec  II.   B  and  model  architecture            
may  be  too  simple  that  the  model  is  now  having  a  high  bias               
issue.     
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Category   Counts   Presentence   Ratio   

banana   146   8.6%   
bowtie   104   6.1%   
cello   173   10.2%   

diamond   101   6.0%   
eyeglasses   109   6.4%   

flower   47   2.8%   
laptop   74   4.4%   
star     114   6.7%   
sun   45   2.6%   

zigzag   74   4.4%   



  
Figure   4.   C-GAN   generated   images   at   epoch   300   
  

B. AC-GAN   base   model   and   preliminary   result   
In  addition  to  the  C-GAN  base  model,  an  AC-GAN           

model  is  developed  to  improve  generated  image  quality.          
Table  II  below  shows  the  network  architecture  of  its           
generator   model.     

TABLE   II.   AC-GAN    G ENERATOR    M ODEL    A RCHITECTURE   

  
The  discriminator  module  is  defined  by  totally  14  layers           

with  repeat  user  defined  block  patterns.  The  general  pattern           
of   each   block   is   defined   as   following   flow:   

Conv2d  →  LeakyRelu  →  Dropout  →        
Batchnorm(optional)   

The  conv2d  layer  is  a  2d  convolution  layer  with  filter            
size  =  3,  stride  =  2  and  padding  =  1.  The  LeakyRelu  alpha               
factor  is  set  to  0.2  as  a  constant.  The  probability  to  keep  an               
element  is  0.75  in  the  dropout  layer.  The  input  for  this  user              

defined  block  is  input  filter  number,  output  filter  number           
and   boolean   flag   for   batchnorm.     

The  discriminator  neural  network  is  defined  as  shown  in           
following   table:   

TABLE   III.   D ISCRIMINATOR    N EURAL    N ETWORK    L AYER   
S TRUCTURE     

  
The  output  of  the  above  neural  net  is  used  to  generate             

validation  prediction  and  label  prediction.  The  validation         
prediction  layer  consists  of  a  linear  layer  followed  by           
sigmoid  activation.  The  label  prediction  layer  consists  of  a           
linear   layer   followed   by   softmax   activation.   

  
Figure  5.  AC-GAN  Generator  and  Discriminator  training  loss  plot          
of   100   epoch.   
  

Both  Generator  and  discriminator  loss  is  shown  in          
Figure  5.  It  clearly  shows  that  both  generator  loss  and            
discriminator   loss   oscillates   and   does   not   converge.     
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Layer   Type   Parameters   Output   
Dimension   

Embedding   
Layer   

class#:   10;   
input   size:(1,100)   

(1,100)   

Linear       (1,128*8*8)   

Reshape     (1,128,8,8)   

BatchNorm     (1,128,8,8)   

Upsample   factor   =   2   (1,128,16,16)   

Conv2d   channel  =  128 ， filter  =  3,       
stride   =   1,   padding   =   1   

(1,128,16,16)   

BatchNorm     (1,128,16,16)   

LeakyRelu   alpha   =   0.2   (1,128,16,16)   

Upsample   factor   =   2   (1,128,32,32)   

Conv2d   channel  =  64 ， filter  =  3,       
stride   =   1,   padding   =   1   

(1,64,32,32)   

BatchNorm     (1,64,32,32)   

LeakyRelu   alpha   =   0.2   (1,64,32,32)   

Conv2d   channel  =  1 ， filter  =  3,       
stride   =   1,   padding    =   1   

(1,1,32,32)   

Tanh     (1,1,32,32)   

Layer   Type   Parameters   Output   Dimension   

block   input   filter   =   1   
output   filter   =   16   
batchnorm   disabled   

(1,16,16,16)   

block   input   filter   =   16   
output   filter   =   32   
batchnorm   enabled   

(1,32,8,8)   

block   input   filter   =   32   
output   filter   =   64   
batchnorm   enabled   

(1,64,4,4)   

block   input   filter   =   64   
output   filter   =   128   
batchnorm   enabled   

(1,128,2,2)   



Figure  6.  AC-GAN  Generated  images  at  the  first  epoch  and  epoch             
100.     
  

The  randomly  generated  doodle  drawings  are  shown  in          
Figure  6.  Ten  different  categories  are  separated  in  10           
columns.  The  comparison  shows  that  the  generator         
generates  fake  images  with  very  poor  quality  at  its  initial            
stage.  After  100  epochs  of  training,  the  generator  generates           
doodle  drawing  with  similar  quality  as  input  image  data           
based  and  shows  clear  signature  of  different  categories.          
More  details  regarding  GAN  models  comparison  and         
evaluation   are   discussed   in   Sec.   IV.     

  
C. C-GAN   model   improvements   with   data   cleaning   and   

hyperparameter   tuning   
Compared  with  the  AC-GAN  outputs,  our  C-GAN         

model  shows  much  weaker  performance.  The  team  suspects          
the  large  presentence  of  low  quality  data  may  contribute  to            
this  and  thus  create  a  cleaned  dataset  with  ten  times  smaller             
amount  as  test  force.  Without  adjusting  the  model          
architecture  and  hyperparameter  but  just  using  the  cleaned          
dataset,  the  model  does  show  improvement  with  human          
evaluation  and  this  lately  got  confirmed  with  our          
evaluations  with  the  Fréchet  Inception  Distance  (FID)  and          
Kernel  Inception  Distance  (KID)  scores  .  We  only  obtain           
1.67  reduction  in  FID  and  5.57   reduction  in  KID  compared            
with  the  model  trained  with  raw  dataset.  One  potential           
reason  data  cleaning  only  plays  a  subtle  role  in  model            
improvement  is  that  while  we  cleaned  up  the  dataset,  we            
also  cut  a  large  amount  (-  90%)  of  the  dataset  due  to  lack  of                
algorithm  to  automate  the  cleaning  process.  As  shown  in           
Figure  7,  the  team  noticed  that  the  banana  category  benefits            
the  most  with  data  cleaning  as  its  raw  dataset  contains  the             
second  largest  noise  data  and  its  drawing’s  relative          
simplicity   may   suffer   the   most   of   noise   data   impact.     

  

  
Figure  7.  Comparison  of  generated  images  with  model  trained  with            
raw  dataset  (left)  and  clean  dataset  (right).  Red  boxes  marked            
human   unrecognizable   fake   images.     
  

In  addition  to  the  data  cleaning,  the  team  tried           
hyperparameters  tuning  with  adjusting  batch  size,  adding         
batch  norm  layer,  adjusting  dropout  probabilities  as  well  as           
adjusting  learning  rate.  Unfortunately,  none  of  the         
mentioned  techniques  works  well  in  our  model  tuning.  For           

certain  parameter  adjustments  from  the  suggested  default         
value,  we  even  observe  a  worsen  result.  For  the  concern  of             
content  limitation  and  most  importantly  our  reader’s  time,          
those   failed   attempts   and   outputs   are   skipped   in   this   report.     

  
D. Truncation   Impact     

With  no  luck  in  hyperparameter  tuning,  the  team  applied           
the  truncation  trick  on  our  C-GAN  clean  data  model.  The            
truncation  trick  is  a  latent  sampling  procedure  for  generative           
adversarial  networks,  where  generator  noise  is  sampled         
from  a  truncated  normal  (where  values  which  fall  outside  a            
range  are  resampled  to  fall  inside  that  range).  Its  original            
implementation  was  reported  in   Megapixel  Size  Image         
Creation  with  GAN [6].  In   BigGAN ,  the  authors  found  that           
truncation  provided  a  boost  to  the  Inception  Score  and  FID            
by  allowing  fine  control  over  the  trade-off  between  sample           
fidelity   and   variety.[7]   

During  the  training,  The  generator  noise  is  trained  with           
sampling  from  normal  distribution   N (0,  1).  After  the          
training,  if  we  sample  more  around  zero  with  a  largely            
truncated  normal  distribution,  our  generator  produces  high         
quality  less  diversified  images  (high  fidelity  sampling  at          
truncation-0.7).  With  more  noise  sampled  towards        
distribution  tails,  we  start  to  see  low  quality  images  with            
truncation-0.25.  The  fidelity  of  these  images  becomes         
lower  due  to  our  generator  unable  to  get  its  weights  to  make              
that  noise  vector  into  a  beautiful  realistic  image.  it  fails  to             
collect  as  much  feedback  on  its  realism  on  those  noise            
vectors   sampled   from   these   regions   during   training.     

  

  
Figure  8.  Impact  of  image  quality  with  truncation  level.  Value            
more  close  to  0  indicates  more  less  truncation  in  the  distribution             
tail  and  its  distribution  more  close  to  normal  distribution.  The  red             
box   marked   a   human   unrecognizable   fake   image.     
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IV. M ODEL    E VALUATION     
Evaluating  the  quality  of  GAN  model  outputs  is  an  open            

and  difficult  problem.  Two  metics,  FID  and  KID,  are           
selected  to  evaluate  the  quality  of  images  generated  by           
generative  adversarial  networks,  and  lower  scores  have  been          
shown   to   correlate   well   with   higher   quality   images.   

The  Fréchet  Inception  Distance  (FID),  invented  by         
Heusel   et  al. [8]  measures  the  similarity  of  the  samples’           
representations  in  the  classic  Inception-V3  object  detection         
architecture  to  those  of  samples  from  the  target  distribution.           
The  FID  fits  a  Gaussian  distribution  to  the  hidden           
activations  (for  this  project,  we  use  the  pool3  layer,  of            
dimension  2048)  for  each  distribution  and  then  reports  the           
Fréchet  distance  as  FID  scores.  One  major  problem  the           
team  faces  while  applying  the  FID  evaluation  is  that  FID            
estimates  exhibit  strong  bias  for  sample  n  even  up  to  10,000.             
As  the  major  computation  pipeline  is  built  on  Google  Colab            
and  accessing  large  mount  data  on  mounted  google  drive           
can  be  extremely  difficult  and  slow.  We  tried  our  best  to             
evaluate  model  samples  with  10K,  but  still  not  certain  if  the             
sample  amount  is  sufficient  enough.  For  comparison  and          
confirmation  of  the  evaluation,  we  also  applied  Kernel          
Inception  Distance  (KID)  as  a  secondary  evaluation  metric.          
KID  estimates  are  unbiased,  and  standard  deviations  shrink          
quickly  even  for  small  n  in  thousands  range.  Binkowski   et            
al.  [9]  used  a  polynomial  kernel  to  avoid  correlations  with            
the  objective  of  Maximum  Mean  Discrepancy  GANs  as  well           
as  to  avoid  tuning  any  kernel  parameters.  In  addition  to            
distribution  mean  and  variance,  KID  also  computes         
skewness.  Table  IV  summarizes  our  four  GAN  models’          
FID  (with  10K  samples)  and  KID  (with  1K  samples)  scores.            
AC  GAN  gets  the  highest  FID  score  with  its  sharp  outline             
while  C-GAN-Clean  data  scores  highest  for  KID.  The  team           
think  this  may  be  due  to  KID  credits  outputs’  shape            
similarity  more.  Although  the  team  likes  the  samples          
generated  with  truncation  better,  its  scores  are  very  close  to            
non-truncated  C-GAN  clean  data.  This  may  reflect  the         
tradeoff   between   fidelity   and   diversity   while   scoring.     

TABLE   IV.   M ODELS ’   FID   KID   S CORES   

V. C ONCLUSION     
Two  GAN  models  were  implemented  and  compared         

through  this  work.  Although  neither  of  them  is  great  enough            
to  successfully  produce  a  human  unrecognizable  replica,  the          
team  got  a  chance  to  learn  and  understand  the  model           
architectures  in  detail.  Data  cleaning  and  sampling         
truncation  are  found  two  major  knobs  in  improving  fake           
images’  quality.  Evaluating  the  models  is  a  hard  task  for  the             
team  as  none  has  used  the  dataset  for  GAN.  Despite  lack  of             
comparable  work  from  literature,  FID  and  KID  scores  are           
computed  and  found  in  general  align  with  human          
judgement.     
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APPENDIX.   A   
  

The   project   code   repository   is   located   at:     
https://github.com/yitingz/AutoDoodling   
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  Sample   Image   FID-10K   KID-1K   

Real   Image   

  

0.     0.   

C-GAN     
-Raw   Data   

  

62.80   10.31   

C-GAN   
-Clean   Data   

  

61.13   4.74   

C-GAN   
-Truncation0.5   

  

63.96   4.84   

AC-GAN     

  

41.21   5.86   

https://github.com/yitingz/AutoDoodling

