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Abstract

Since 2017, the blockchain and cryptocurrency space has rapidly been gaining
unprecedented levels of attention from new developers and users. While the
growth of platforms like Ethereum opens up a wealth of new possibilities around
decentralized technologies and programmable value, critical security flaws in smart
contract code remain a major concern and have already led to the loss of hundreds
of millions of dollars of funds. In this project, I implement a static analysis tool
that focuses on one of the most common yet damaging attacks—reentrancy attacks.
Given a contract’s source code, the model I implemented seeks to flag functions
vulnerable to reentrancy.

1 Introduction

In the world of Ethereum, one of the most infamous attacks is the reentrancy attack, a type of race
condition where a contract function can be repeatedly called before its first invocation is finished.
This type of attack leads to unintended control flow and mistimed state updates. As of now, this bug
has led to the loss of approximately $50 million worth of ether.

I present a static analysis tool that, given a contract’s source code, can identify functions vulnerable to
reentrancy attacks. At a high level, this tool parses contract source code to extract particular keywords
such as global variables and modifiers, tokenizes the source code of each function in the contract,
and feeds embedded representations of these tokens through a model which classifies the function as
reentrant or safe. I trained this model on a mixture of both real and augmented contract code and was
able to achieve an accuracy or 98% and F1 score of 0.95 on the test set.

Figure 1: Sample contract function vulnerable to reentrancy attacks with control flow diagram [4].
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2 Datasets

The data used for this project is drawn from three separate datasets. The first dataset is a curated list
of 16 unique contracts currently live on the Ethereum blockchain, each of which has one function
vulnerable to reentrancy and have labels at the specific lines containing vulnerabilities [2]. The
second is a list of 185 contracts used for a similar project on smart contract vulnerability detection,
all of which were labeled as having or not having a reentrancy vulnerability based on the results of
the Mythril static analysis tool [3]. The final dataset is a list of 50 augmented contracts which all
have injected reentrancy vulnerabilities [4].

I primarily drew from the first and third datasets, as the locations of vulnerabilities were explicitly
labeled for those two. Additionally, Mythril and its competitor static analysis tools were listed
as only having about 30% accuracy on reentrancy attacks [5], raising questions about the ground
truth accuracy of the second dataset’s labels. I initially trained on around 450 function examples,
40% which were drawn from the augmented dataset, but found a mismatch between distributions
of the real and augmented data. Due to this mismatch and clear overfitting to the patterns of the
vulnerability injection tool, I later reduced my training set to under 200 examples and manually
altered many existing examples to take on the opposite label. The test set consisted of the most
realistic unaugmented data available and the final train/test split was 82/18.

3 Preprocessing

Given the limited amount of labeled data available for this particular problem, there was a substantial
amount of preprocessing needed to best represent the source code. This required layering on
additional logic to the pre-existing Pygments Solidity Lexer to tokenize function code in a manner
more customized to the task of identifying reentrancy vulnerabilities.

Figure 2: Converting function source code into token embeddings.

Since reentrancy attacks are mainly centered around the order of global state updates and the
guards put in place to halt unintended updates, the first important step was to write scripts to
extract the names of global variables and modifiers (function guards) from the overall contract so
they could be explicitly represented in the tokenized function representations. Additionally, extra
logic was required to increase the specificity of tokens beyond what the pre-built lexer provided.
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Figure 3: Word2Vec Map Representation in 2D.

After converting a contract’s functions into lists of tokens, the next step was to convert tokens into
embeddings. I used 15-dimensional Word2Vec embeddings, as around 15-dimensions seemed to be
a common number based on other papers focused on deep learning for source code analysis [6, 7,
9]. In addition, each function representation was given a default length of 500 embeddings and was
padded with additional zero-vectors when necessary.

4 Methods

4.1 Baseline BLSTM

The first approach was inspired by the work of Li, Z. et al., who fed embedded functions through
a BLSTM network when building a classifier for C++ vulnerabilities [8]. When trying a similar
approach using a model with one BLSTM layer and two dense layers, the model was able to achieve
around 80-85% accuracy on the training set and, surprisingly, around 85-90% on the test set. It
is worth noting though that despite the decent accuracy, many of the outputs seemed to indicate
confusion between the two classes, as most predictions were in close range of the 0.5 threshold.

4.2 Baseline CNN with One Conv1D Layer

Shortly after my initial experimentations with the BLSTM, I switched to a basic CNN which had
a 1D convolution layer, 1D max-pooling layer, and two dense layers. This change was inspired by
Harer et al., who found the most success for C++ vulnerability detection with a similar TextCNN
approach [7]. This brought the training accuracy up to around 95-98% and the test accuracy up to
85% after 250 epochs of training.

4.3 CNN with One Conv1D Layer and Dropout

After analyzing the examples missed from the initial baseline CNN, it became clear that the model
had overfitted to the structures of the most abundant training examples, as high confidence predictions
were being output on the test examples most closely reflected in the training set while unexpectedly
low values were being output for positive examples that differed in structure. Adding two layers of
dropout with keep probabilities of 0.4 raised the predicted probabilities of these less well-represented
training examples, helped improve recall, and fix plateauing loss seen in the baseline CNN model.
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Figure 1: Figure 3: Baseline CNN Loss Figure 2: Figure 4: CNN with Dropout Loss

4.4 CNN with Two Conv1D Layers and Dropout

Adding a second 1D convolution layer helped improve the model’s overall accuracy and recall, raising
the predicted probabilities of the previously missed false negatives from around 0.4 to consistently
0.6 and above. After adding one layer of dropout, this model became the highest performing variant.

Table 1: Summary of Notable Experiments
# Experiment Results
1 Baseline BLSTM

(BLSTM, Dense, Dense)
Accuracy: 86%, F1: 0.73, Recall: 0.89

2 Baseline CNN with One Conv1D Layer
(Conv1D, MaxPool1D, Dense, Dense)

Accuracy: 93%, F1: 0.82, Recall: 0.72

3 CNN with One Conv1D Layer with L2 Regularization
(Conv1D, MaxPool1D, Dense with L2 Regularization,
Dense)

Accuracy: 93%, F1: 0.80, Recall: 0.67

4 CNN with One Conv1D Layer and Dropout
(Conv1D, Dropout, MaxPool1D, Dropout, Dense,
Dense)

Accuracy: 95%, F1: 0.90, Recall: 1.0

5 CNN with Two Conv1D Layers
(Conv1D, Conv1D, MaxPool1D, Dense)

Accuracy: 97%, F1: 0.94, Recall: 0.89

6 CNN with Two Conv1D Layers and Dropout
(Conv1D, Conv1D, Dropout, MaxPool1D, Dense)

Accuracy: 98%, F1: 0.95, Recall: 1.0

5 Experiments and Results

The metrics of priority for this classification problem were F1 score and recall. I put an emphasis on
recall in particular because the cost of outputting a false negative prediction on a reentrant function is
much higher than that of outputting a false positive.

The initial BLSTM faced a high bias problem and struggled to achieve a training accuracy over
85%. Moreover, the model’s predictions, both correct and incorrect, had low confidence and were all
relatively close to the 0.5 threshold. In addition, the primary benefit of the BLSTM—communicating
information over longer sequences—was likely lost due to the fact that most of the reentrancy
vulnerabilities in my dataset manifested themselves usually in just a few consecutive lines.

The 1D CNN approach was immediately more successful and largely solved the high bias problem
that the BLSTM faced. Still, for the baseline CNN, I encountered high variance and was seeing test
accuracy consistently 10% lower than the training accuracy (95% and 85% respectively). To reduce
overfitting, I first tried adding L2 regularization but saw little to no improvement in the probabilities
of false negatives. Adding two layers of dropout with keep probabilities of 0.4, however, increased
the output probabilities of less well reflected positive examples from below 0.1 to consistently above
0.3.
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Given that there was still evidence of overfitting to a structure better reflected in the training set, I
added several augmented examples to my test set to check for overfitting to the augmented code
generator’s style. The model output near-perfect predictions on all of the augmented data. This result,
combined with the fact that the augmented data was more similar to the positive examples being
correctly predicted in the test set indicated overfitting to the patterns of the augmented data generator.

I then experimented with different distributions of augmented to genuine data and found that reducing
the augmented/genuine split from 40/60 to 20/80 substantially improved the overfitting problem
without noticeably affecting the model’s performance on the realistic examples. The relatively
harmless removal was likely due to the fact that the generated examples had low variability in their
structure, making even a much smaller number of examples suffice to reflect the pattern provided by
the generator without causing the model to overfit on the pattern. With the output probabilities of the
less well-represented examples now consistently reaching 0.4, an improvement from the previous
probabilities of 0.3, I lowered the positive classification threshold from 0.5 to 0.4, bringing the recall
of the CNN with one convolutional layer and dropout up to 1.0 while maintaining an F1 score of 0.9.

My final experiment was to try adding a second layer of 1D convolutions to the original baseline
CNN. Initially, I thought adding a second layer might worsen the overfitting problem I had been
trying to address. To my surprise though, the predicted probabilities of the positive examples I had
been struggling to correctly classify were bumped up to consistently greater than 0.6, suggesting that
the issue might have actually been that the previous single-layer models were failing to pick up more
complex features. While still correct, some of the predictions on the well represented true positives
had been lowered. Adding one layer of dropout with a low drop probability of 0.3 helped mitigate
this issue, leaving this model with an accuracy of 98%, F1 score of 0.95, and recall of 1.0.

6 Conclusion and Future Work

I created a processing pipeline to more carefully represent the limited data available and implemented
two primary models, focusing most of my efforts on optimizing the 1D CNN variant. The CNN with
two 1D convolution layers and one layer of dropout performed the best, achieving 98% accuracy,
1.0 recall, an F1 score of 0.95, and an AUC of 0.99. After struggling to accommodate both the low
availability and variability of my data and experimenting with different dataset distributions, it is clear
that the most important next step would be to gather more complex examples of reentrant functions
or create a sufficiently random reentrant function generator. Towards the end of the project, I briefly
tried writing a script to generate reentrant functions with a higher level of variability than the one
used to create the augmented portion of my dataset but found the task too complicated given the time
remaining. Expanding on these efforts and gathering a wider variety of training data would likely
improve the flexibility of my model and bring it closer to being a practical static analysis tool for
Ethereum developers.

7 Code

The preprocessing and model code as well as the dataset and labels can be found at:
https://github.com/ltchang2019/Solidity-Reentrancy-Detector
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