Deep Learning Model for Subsurface Flow Prediction
with Multifidelity Data

Yusuf Nasir
Department of Energy Resources Engineering
Stanford University
nyusuf@stanford.edu

Abstract

In order to maximize value from a petroleum or geothermal reservoir, the time-
varying rates at which fluids are produced and injected needs to be optimized. This
typically requires thousands of expensive flow simulations. In this work, we used
a convolutional neural network (CNN) to condition a long short-term memory
(LSTM) model in order to predict flow from the subsurface using multifidelity data.
This entails generating a lot more training data at low fidelity level and correcting
the error incurred by the use of low fidelity data with few high fidelity data. A
speed up of about 7 times was achieved compared to use of only high fidelity data.
This is a significant time saving when you consider that each field scale simulation
could take hours to days.

1 Introduction

A brute force approach to solving the field development optimization problem entails discretizing the
bound of possible well pressures to be imposed on each well into different regions and simulating all
possible combination of these regions. The optimal decision will then be the well rates (obtained
after flow simulation with the well pressures) that give the highest value of an economic metric
under consideration. However, due to the significantly high number of possible well pressure
combination in cases where large number of wells are considered, the brute force approach is not
feasible. Traditional optimization algorithms, such as particle swarm optimization, genetic algorithm,
have been considered, and they generally require many flow simulations in order to solve this complex
optimization problem. Each of this field-scale simulation can take hours to days, making it infeasible
or highly computational expensive to solve this problem using the actual flow simulator.

In this work, we consider the use of convolutional neural network (CNN) and long short-term memory
(LSTM) to develop a deep learning model to replace the time-consuming flow simulation process.
Due to the uncertainty in our knowledge of the subsurface, we considered different representations
(realizations) of the the geological model. This can be mathematically represented by:

GO = f(m® () (1)

where f is the deep learning model we seek to find, that given a realization m*) and a vector of well
pressures z(7) predicts the flow rate ¢(*7) as a function of time.

Because it is relatively more computationally to simulate the high fidelity model (my), we use a
much larger amount of low-fidelity data which are inexpensive to obtain from a low dimensional form

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

of the realizations (m;) for flow prediction and few high-fidelity data to correct the error incurred
due to the use of low fidelity data. We train two deep learning models: the first model uses the low
fidelity data to map from the input (m;, 2;) to the output (g;) while the second model learns the error
or mapping from ¢; to g using a few high fidelity data (my,, x) and an embedding extracted from the
first model (§). This is further discussed in the methodology section.

2 Related work

Machine learning techniques such as support vector regression (SVM)|Guo and Reynolds|[2018]] and
gradient boosting (Nwachukwu et al|[2018]] and |Nasir et al.[[2019]) have been employed to develop
surrogates for the flow simulator. However, in these studies the predictor was a scalar value (the
cumulative rate) while in our study we are interested in time-series prediction. For this reason, deep
learning techniques have been employed for time-series prediction in a number of related studies.

More recently Tang et al.|[2019] have used a combination of CNN and LSTM for flow rate predic-
tion.In [Tang et al.| [2019]], however, a fixed well pressure was imposed on the wells and the goal
was to predict flow rate for only varying realizations of the geological model. [Jin et al.| [2019] have
also employed deep learning technique for flow rate prediction for varying well pressures but fixed
realization. In all the aforementioned work, the training data was generated using the high fidelity
geological models.

Meng and Karniadakis| [2019] proposed the use of a composite neural network that learns from
multifidelity data. They used three neural networks (NNs), with the first NN trained using low fidelity
data and coupled to two high fidelity NNs, one with activation functions and another one without, in
order to discover and exploit nonlinear and linear correlations, respectively, between the low fidelity
and the high fidelity data. In contrast to the approach in|Meng and Karniadakis| [2019]] which uses
only fully connected layers with scalar inputs, a composite CNN and LSTM is used in our study to
predict time-series data, which is the evolution of flow rates as a function of time.

3 Dataset and Features

The required dataset for training, evaluation and testing was generated using Stanford’s automatic
differentiation general purpose research simulator (AD-GPRS). The high fidelity realizations (mp,)
of the geological models of grid size 120 x 120 are coarse-grained using an upscaling process to
generate the low fidelity realizations (m;) of grid size 20 x 20 as shown in figure The steps taken to
generate the data are as follows:

Step 1: Sampled 400 random well pressures (z;) from the allowed well pressure bound. z; €

R36X400 where 36 represent the well pressures to be imposed on 6 wells for six different time
intervals.

Step 2: Simulate all 400 pressure samples using the reservoir simulator with 50 low-fidelity realiza-
tions (1) (20,000 flow simulations). This took about 7 hours. After flow simulation, ¢;) is extracted
which has five outputs in each time interval.

Step 3: Used k-means clustering, with dissimilarity (Euclidean distance) calculated using ¢, to select
50 representative well control pressures (xj, € R36X 50) from the 400 generated in step 1, and ran
the flow simulation (2500 simulations) using the 50 high-fidelity realizations (my,). This took about
41.5 hrs. After flow simulation, ¢y, is extracted, which is the quantity we are interested in predicting.

The permeability field depicted in figure I defines the conductivity of fluid in different parts of the
reservoir. Min-max scaling was used to normalize the permeability and well pressure values before
training. The 20,000 low-fidelity data was divided into 18,000, 1000 and 1000, while the high fidelity
data was divided into 2000, 250, and 250 for training, evaluation and testing, respectively.

4 Methods

Figure [2| shows the architecture of the first deep learning model used to predict g;. Because of the
spatial and high dimensional nature of the geological models m;, CNN was used to find a lower
dimensional representation ; for each of the 50 upscaled models m;. & serves as input to two fully

log(k)
12

60 80 100 120

High Fidelity Low Fidelity

Figure 1: Log permeability field for a high-fidelity realization of size 120 x 120 and an upscaled
low-fideity realization of size 20 x 20

connected layers (F'C and F'C3) that are used to initialize the cell and hidden state of the LSTM.
The LSTM also take the well pressures x; as an input with six time intervals. The output of the
LSTM is the predicted flow rate ¢;. Remember that we are interested in predicting the flow rate of
the high-fidelity realizations gy, hence we used a second deep learning network to model the error
(gn — qv).

In the second deep learning model (figure [3), a CNN model is used to find a low dimensional
representation &y, of the high-fidelity realizations my,. &, and &; (extracted using m; and xj, as inputs
in the first model) are then concatenated and used as inputs into two fully connected layers (F'C
and F'C5) that are used to initialize the cell and hidden state of the LSTM in the second model. The
LSTM also takes as input the predicted g; (extracted using m; and x}, as inputs in the first model)
and . The output of the second model is g;,. All inputs to the second model are normalized using
min-max scaling.

FC

fleld(ml)

FC X

Figure 2: Deep learning architecture that utilizes low-fidelity data

The composition of the CNN used in this work is same as that in the encoding model of
[2019]. It has 4 2D convolutional blocks and 3 resnet blocks. The LSTM comprises of six time
intervals with 200 neurons in both deep learning models. The mean absolute error (equation2)) was
used as the loss function because it provided lower test error compared to the mean squared error.

Permeability —~CNN % LSTM —4:

5(3) (@)

N,
1 (i i
q° —q 7Lh:ﬁtz a) —q 2
=1

where [V, is the length of ¢; and L; and L, are the loss functions for the first and second deep learning
models, respectively.

1 &
Ll:ﬁtz

i=1

FC

field(m,,)

Permeability CNN NENENITREY / LSTM

FC, (91, x1]

Figure 3: Deep learning architecture that utilizes high-fidelity data

5 Results and Discussion

Table [T]shows the optimal hyperparameters obtained using a grid search process.

Table 1: Optimum hyperparameters

Hyperparameters | Values
Learning rate 0.03
Number of epochs 250
Batch size 16
Dropout rate 0.2

Adam optimizer was used with the beta parameters set at their default values and the optimal learning
rate as shown in Table[T]is 0.03 with a decay rate of 0.02. It was noticed that the lesser the batch size
the better the trained model was able to generalize, however, to reduce the training time, a batch size
of 16 provided a good balance between training cost and generalization.

Table[2] shows the mae during training,evaluation and testing. Using low batch size and monitoring
the validation loss ensured the models did not over fit.

Table 2: Mean absolute error (MAE) for the different model

Model Training MAE || Dev MAE | Test MAE
Low fidelity model 77 82 74
High fidelity model 65 72 68
Third model(only high-fidelity data) 107 111 115

Figure [] shows the results for a single well pressure and realization predicted by both deep learning
models and a third model trained on only high-fidelity data.Figure ?? shows the actual and predicted
q; by the first deep learning model. There is a very close agreement between the two curves. This is
supported by the low mean absolute prediction error. In figure ??, the predicted ¢; and ¢y, values are
compared with the actual g, curves and it is evident that a significant amount of error (difference
between red curve and black dots) is incurred due to the use of the low-fidelity. However, the second
deep learning model was able to correct this error using few high fidelity training data. In figure ??,
the green curve represent a third deep learning model that is trained using only the few high-fidelity

data (my, and xj) to predict g using the setup in the first deep learning model.Due to only few
training data for varying realization and well pressures, it was not as accurate as the case where both
low and high-fidelity data were utilized.

4000 10000
© Actual q © Actual qa,
. 9000 .
3500 e Predicted q, —— Predicted q,,
B 8000 —— Predicted q,

3000

2500

2000

1500

1000

Oil production rate (STB/day
Oil production rate (STB/day)

o
=]
S

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (days) Time (days)
(@) (b)
10000
O Actual a,
9000 — Predicted %

8000 \ - « Predicted q, using only HFD

7000

6000

5000

—

4000

3000

2000

Oil production rate (STB/day)

1000

0 500 1000 1500 2000 2500
Time (days)

(©

Figure 4: Results for a single well pressure setting and realization predicted by both deep learning
models and a third model trained on only high-fidelity data

6 Conclusion and Future Work

In this work, we have demonstrated deep learning models can be used for the highly nonlinear
subsurface flow prediction with a combination of low and high-fidelity data. This allows us to
generate a large amount of low-fidelity data at a relatively lower computational cost and few high-
fidelity data to correct the error introduced by the low-fidelity geological realizations. Assuming we
are to simulate all the 50 realizations and 400 well pressure samples, that would have taken 332 hrs,
however, we generated a combination of low and high-fidelity data in 48.5 hrs resulting in a speed up
of about 7.

In this work only the oil rate was predicted,however, in optimization, the water production and
injection rate are relevant quantities to calculate the economic value to be derived from a certain
well pressure setting. Hence it will be important to extend this work to predict water production and
injection rates. This model can also be deployed as a surrogate during production optimization under
uncertainty.

7 Acknowledgement

I will like to thank Yimin Liu, Meng Tang and Yong Do Kim for the useful discussion on deep
learning architectures and training for problems within the domain of subsurface flow prediction. I

will like to acknowledge Stanford CEES for the GPU resources provided to train the deep learning
models.

8 Code

The code for this work can be found at https://github.com/yus-nas/Composite-DNN-for-Well-
Production-Optimization

References

References

Z. Guo and A. C Reynolds. Robust life-cycle production optimization with a support-vector-regression proxy.
SPE Journal, 2018.

Z.L.Jin, Y. Liu, and L. J Durlofsky. Deep-learning-based reduced-order modeling for subsurface flow simulation.
Technical report, 2019.

X. Meng and G. E. Karniadakis. A composite neural network that learns from multi-fidelity data: Application to
function approximation and inverse pde problems. arXiv preprint arXiv:1903.00104, 2019.

Y. Nasir, W. Yu, and K. Sepehrnoori. Hybrid derivative-free technique and effective proxy treatment for
constrained well placement and production optimization. Journal of Petroleum Science and Engineering,
page 106726, 2019.

A. Nwachukwu, H. Jeong, A. Sun, M. Pyrcz, and L. W. Lake. Machine learning-based optimization of well
locations and wag parameters under geologic uncertainty. In SPE Improved Oil Recovery Conference. Society
of Petroleum Engineers, 2018.

M. Tang, Y. Liu, and L. J. Durlofsky. A deep-learning-based surrogate model for data assimilation in dynamic
subsurface flow problems, 2019.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Results and Discussion
	Conclusion and Future Work
	Acknowledgement
	Code

