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1 Introduction

1.1 Background & Related Work

Deep convolutional neural networks (CNNs) have proven to be the most successful models of the
nervous system’s sensory processing paradigms to date. Significantly, The Baccus Lab at Stanford
has achieved state of the art success modeling the retinal processing with a three layer CNN,
mimicking the structure and number of cell layers in the retina [1] (Figure 1.1).

While these models have lent significant insights into both the brain’s neural computations and the
circuit mechanisms that pertain to relevant natural stimuli, there exists additional potential for these
biologically motivated systems to inform and augment traditional machine learning tasks. Indeed,
as the retina can be thought of as a preprocessor serving all downstream vision tasks, evolutionary
consensus would hold that it approximates a near-optimal solution for many tasks. There are
currently no transfer learning paradigms or classification models that employ biologically pre-trained
networks. The aforementioned CNN model of retinal spiking at different times, referred to as Deep
Retina for the remainder of this paper, poses an excellent opportunity to analyze the efficacy of these
biologically motivated systems.

This research builds upon previous models of retinal spiking, particularly investigating:

1. A “fully convolutional” Deep Retina model, modifying current retinal prediction models to
better serve encoding tasks

2. The efficacy of these learned visual encodings at improving two LSTM-based video classifi-
cation tasks

1.2 Objective/Model Description

First, to better investigate encoding problems, the Baccus Lab’s Deep Retina (DR) model was
changed to be “fully convolutional”. As retinal data only contains spiking from a few cells with
localized receptive fields, this allows the model to learn a filter for each cell. This filter can be
employed during encoding tasks to tile that cell’s response across input locations.

To do this, Deep Retina’s final dense layer, trained to output the spiking of the few cells

recorded in the data, is replaced with another convolutional layer (Figure 1.2). The output of this
convolutional layer is element wise multiplied by a selection matrix that is incentivized to be one hot
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Figure 1: Schematic of the Baccus Lab’s “Deep Retina” CNN, trained on data of diverse visual
stimuli coupled with electrophysiological recordings from salamander retina.

via a ‘semantic’ loss regularizer term by Xu et. al. [2]:

L(one — hot,¥ P, filters) = —f Z log ij H (1—pr)
i=1
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Thus a model trained on the same sparse cell data as before can learn a convolutional filter for each
cell, allowing it to tile the filter of each cell during encoding tasks. As such, once trained (Figure 1.3),
the final selection matrix is removed and the learned filters can act on and encode all locations in the

latent space.
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Figure 2: Schematic of the LSTM architecture with input (X) frame bins first encoded by Deep
Retina. Video classification (y) is performed on a FC-layer’s output of the final internal units (h) of
the LSTM.

Next, to analyze the efficacy of these retinal computations in a video classification setting, this
research constructed a hybrid “DeepRetina-LSTM”. This LSTM takes inputs of binned video frames
passed through Deep Retina over the course of a video, and outputs a one-hot video classification
label (Figure 2) .

2 Dataset and Features

2.1 Retinal Spiking Dataset

The aforementioned Deep Retina was trained on 40 binned 10ms frames of a natural movie (Figure 3)
labeled with the experimentally measured neural spiking data across cells. These neural spikes were
measured with a micro-electrode array, recording 60 channels of extracellular electrophysiological
signals from a retina exposed to natural movies. Standard spike sorting algorithms were used to read



spike times across 8 cells from the raw data. The 8 cell spike time were then binned in accordance
with the window to return 8 firing rates for each labeled video frame example.
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Figure 3: A natural movie next to four of the seven synthetically generated stimuli (Left); Screenshots
from the UCF-11 Dataset (Right)

2.2 Synthetic Video Classification Dataset

The first dataset for video classification included a variety of simple artificial stimuli known to evoke
retinal response—allowing for a proof of concept first pass at this transfer learning system (Figure 3).

This data was manually constructed with custom num.py methods and independently gener-
ated noise (within the datas.py file) and actively loaded into testing and training environments as
batches of size [B, T, D, H, W]. Here B = 100 videos in each batch, T = the start times of each 400ms
long binned video frames separated by 40ms each, D = 400ms for each frame, and H = W = 50, the
height and width of each frame). Accompanying these input video batches, the loader returned label
batches of size [B, K] with K = the number of video classes for one-hot labels.

2.3 Real Video Classification Dataset

For the harder problem of video classification of real world actions—the UCF11 (YouTube Action)
Dataset was used [3]. Preprocessing involved cropping the video frames’ height and width to 240
by 240 pixels, upsampling each frame to match the 40ms frame rate during Deep Retina’s training,
binning each step into ten 400ms data points, and ensuring at least 100 frames for each video by
cutting or padding videos with extra blank frames. Batches were of size 10 due to computational
resource limitations during training.

3 Methods

In order to test the trained Deep Retina across its efficacy as both a transfer learning and fixed
encoding paradigm, four different models of the aforementioned CNN + LSTM architecture were run
for synthetic classification.

As a control, the deep retina architecture was first replaced by a Xavier initialized CNN of
the same hyperparameters with untrainable weights. Next, the same Xavier initialized CNN was
run with trainable weights. Both cases were then replicated with fully convolutional Deep Retina
parameters, set to be trainable and frozen.

For the UCF-11 dataset, due to computational limitations, only two models were run: a
DR with frozen weights and a Xavier initialized DR architecture with trainable weights.



4 Results & Discussion
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Figure 4: Accuracy curve matrix for synthetic video classification

As the synthetic video classes were generated for the purpose of highly diverse and suggestive retinal
responses, this problem was too simple to yield meaningful results from a final accuracy standpoint.

However, comparing accuracy curves across training epoch yields insights confirming the
expected benefits of the Deep Retina architecture for this task. Indeed, a pre-trained DR with
trainable weights performs best, achieving almost 100% accuracy immediately, and exhibiting
the least stochasticity of all models. A pre-trained DR with frozen weights also quickly achieves
almost perfect accuracy while exhibiting slightly more stochasticity. Both Xavier initialized DR
architectures, with trainable and frozen weights exhibit large amounts of stochasticity and poor classi-
fication performance, with the untrainable DR exhibiting the worst validation accuracy of almost 85%.
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Figure 5: Accuracy curves for UCF-11 video classification

While the UCF-11 classification is more difficult, the frozen DR model still outperforms the trainable
randomly initialized model. In fact, while the frozen DR model yields higher accuracy (92% during
training and 29% during validation) and learns relatively quickly, the Xavier initialized model fails
to converge at all. This issue may potentially be due to poor hyperparameters and is being further
investigated.

Significantly, an issue throughout the present analysis is the fact that the BatchNorm (BN)
function in Pytorch that this work employed created a discrepancy between training and validation
classification tasks. This is due to the fact that it accumulates BN statistics over time during training,
but leaves the BN statistics fixed during validation. Both the synthetic and UCF-11 analyses exhibit



potential overfitting to these BatchNorm statistics, leading to poor and highly stochastic validation
accuracies for all models. Additional work freezing BN from a preliminary epoch, in order to match
statistics during training and validation, is currently being executed.

5 Conclusion/Future Work

While further research validating and improving these results is necessary, the current report presents
a sufficient and suggestive—yet preliminary—foray into the potential benefits of biologically-inspired
neural networks. As both an encoding and transfer learning paradigm, computations learned from
neural spiking in the retina allow models to train faster and more accurately than Xavier initialized
versions of the same architectures.

Future research efforts will focus on rectifying validation and training discrepancies, further
analyzing UCF-11 performance, and applying these encodings to RL and Meta-RL tasks.
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