
Object Localization of Concentrated Animal
Feeding Operations

By MINNIE HO AND JORGE TRONCOSO

We modify an object detector based on Yolov3 to detect concentrated animal feeding
operations from high-resolution satellite images. We focus on optimizing the Mean Average
Precision (MAP) at an Intersection-Over-Union threshold of IOUt = 0.1. We show specific
techniques and hyper-parameters tuned to achieve a MAP@0.1>0.9. We compute saliency
maps to visualize what the model is learning and draw conclusions from both exercises as
future steps to scale our detector.

1 Introduction

Livestock production in the US has increasingly
shifted to operations that raise large numbers of
animals in confinement, with the largest facili-
ties raising over 125,000 chickens or 3,000 pigs.
These facilities, known as Concentrated Animal
Feeding Operations (CAFOs), are estimated to
produce more than 40% of US livestock and gen-
erate 335 million tons of waste per year, posing
potential risks to human health and to the envi-
ronment [4]. The EPA has noted that agricul-
ture is the leading contributor of pollutants to
US bodies of water and has estimated that nearly
60% of CAFOs do not hold permits [4]. In 2008,
the Government Accountability Office mentioned
that “no federal agency collects accurate and con-
sistent data on the number, size, and location of
CAFOs" [4]. Such data is a necessary, but cur-
rently labor-intensive and time-consuming first
step towards monitoring and eventual environ-
mental regulation of these operations.

2 Dataset and Features

Professor Daniel E. Ho at the Stanford School
of Law has obtained high-resolution satellite im-
ages from the US Department of Agriculture’s
National Agricultural Imagery Program (NAIP),
hosted on Google Earth Engine, with a maximum
resolution of 15 cm per pixel [3]. Training data in
the form of bounding boxes and identified CAFO
types (swine, cattle, and poultry) was manually
accumulated for several counties in Indiana and
for one county in North Carolina [4]. The goal
of our project is to build a model that can de-
tect CAFOs, draw bounding boxes around them,
and accurately classify them as poultry, swine, or
cattle. We build on work from [6].

The training set is small. When summed over
both Indiana and North Carolina, it consists of
2352 total CAFOs, with 1304 swine, 964 poultry,
and 84 cattle CAFOs. Secondly, we observe that
there is a severe class imbalance problem; Duplin
County in North Carolina has no cattle CAFOs
(600 swine and 300 poultry); Lagrange County

in Indiana has 209 total CAFOs (13 swine, 167
poultry, and 29 cattle), and Dubois County in
Indiana has 191 total (108 swine, 56 poultry, and
27 cattle). Distributions across states are clearly
different, as well as across counties within a state.

CAFOs range in size from 50x30 m2 to 600x180
m2 (See Figure 2c). It is common to find one
to three CAFOs together in a 1 km2 area, as
well as wide swaths of areas without a single
CAFO. For example, in Lagrange County in Indi-
ana, which is 1,000 km2, CAFOs account for less
than 3% of the total area of the county. Finding
a CAFO is like finding the proverbial "needle in
the haystack".

All CAFOs consist of metallic sheds (some long,
some short) used to house the animals (See Fig-
ure 1). Cylindrical feeding tanks are sometimes
visible, and (very rarely) a cow or pig can be spot-
ted outside. CAFOs are difficult to categorize
even visually in a consistent manner. For exam-
ple, in North Carolina manure is stored outdoors,
while in Indiana, manure is typically stored under-
ground; hence the presence of a manure pit is not
consistent enough to be useful for categorizing
CAFOs. In our initial training runs, we find that
CAFO sheds are sometimes mistaken for long
translucent road sections, airport runways, long
urban buildings or long thin parking lots. Hence,
to simplify our problem, we mask urban areas
and choose to detect only one class (CAFO or no
CAFO) for now.

The highest possible resolution of an image from
our dataset is 15 cm per pixel. However, at such
high resolutions, the amount of data can be un-
wieldy. As an example, the images of Lagrange
County at a 1 m per pixel resolution takes 4.4
GB (in Geotiff format) and 131 GB at a 15 cm
per pixel resolution. Clearly, even at higher res-
olutions of 1 m per pixel, we need to break up
the county into smaller images. We refer to this
operation as "tiling", where a county is cut into
consecutive, neighboring, non-overlapping RGB
images of size 1024 pixels x 1024 pixels.

We note for this tiling example, the largest CAFO
(600x180 m2) easily fits in one 1024 pixel x 1024

1



pixel image at a resolution of 1 m per pixel. How-
ever, at a resolution of 15 cm per pixel, the largest
CAFO would require 2x4 such images, and this
is only if the CAFO was properly centered within
the rectangle of images. For this project, we focus
on 1 m per pixel resolution, especially since it is
visually unclear whether higher resolutions will
help improve performance.

We also mention two other relevant items of inter-
est; unwanted regions and partial CAFOs. Google
Earth Engine enables us to mask pixels outside
a given region of interest by turning unwanted
pixels to black. Hence, we can throw out images
which have a majority of black pixels as irrele-
vant to our data set. In addition, as we tile the
images, we will always inadvertently cut some
CAFOs into pieces. We use a threshold of 0.2 to
determine when a cut CAFO is "too small" and a
threshold of 0.2 to determine when a CAFO has
too many black pixels.

3 Methods and Related Work

There are quite a few object detection and local-
ization algorithms, including a large list found
in survey papers such as [16] and [7], as well as
individual algorithms of note, such as Yolo [5],
and Mask R-CNN [12]. From these, we choose
Yolov3 as our initial algorithm [11] since it is sim-
pler and faster than other methods, and achieves
good performance. There are several github
repositories available with Yolov3 implementa-
tions. We use the following site as the basis for
our Yolov3 code [15].

Most of the previously generated weights using
the Yolov3 algorithm were derived either from
COCO or Pascal VOC datasets. Unfortunately,
none of the 80 COCO or 20 Pascal classes re-
motely resemble the CAFO classes in our dataset.
We chose to initialize our weights with the orig-
inal Yolov3 weights which were trained on Ima-
geNet. In addition, to overcome the limitations of
our small data set, we incorporate data augmen-
tation, since our satellite images are impervious
to rotations, flips, translations, as well as color
changes.

To determine the performance of our algorithm,
we use the following baseline parameters in train-
ing:

• Loss weights: wgiou = 3.31 and
wobj = 52.

• Thresholds: IOUt = 0.5, conft =
0.01, and nmst = 0.01.

• Learning algorithm: optim.SGD (Py-
torch) with Nesterov momentum, with
the momentum value set to 0.949.

• Learning rate: Initial learning rate of
λ0 = 0.00261, and final learning rate of
λf = 10−4 ∗ λ0, with a staircase sched-
uler in between.

• Regularization: L2 regularization of
the weights, with λ = 0.000489.

We use the metrics: precision, recall, F1, Mean
Average Precision, and loss, as described in the
next section. We use batch normalization, with
16 samples per batch, except when we run multi-
class simulations, when batch-size = 8, due to
constraints on GPU memory.

To aid us in hyper-parameter tuning, we check
training, validation, and test set losses against one
another to guide us with directions in which to
improve the model.

4 Experiments/Results/Discussion

We trained our Yolov3 algorithm on two counties:
Duplin County in North Carolina, and Lagrange
County in Indiana. For each county, we use only
one class (the presence or absence of CAFOs).
We also performed class balancing by using a
ratio of 1:1 (CAFO:no CAFO) for our training
and validation data.

We split our small data set using a 65/15/20
split of tiles with CAFOs, adding enough back-
ground images to form the correct ratio of back-
ground:CAFO images for the test set that we
would see in practice. We augment the data using
shear (-2,2), rotation (-10,10) degrees, translation
(.1,.1), scale (0.9,1.1), and 50/50 LR and UP flips.

In our baseline algorithm, we retain the K-means
clusters obtained by the original Yolov3 algorithm
on Imagenet as our baseline.

4.1 Improving Detector Performance

For our project, we use the COCO Mean Average
Precision (MAP) on the test data, as described
in [8]. Most of the results quoted in this report are
for an Intersection-over-Union (IOU) threshold of
0.1, denoted as MAP@0.1, since our ground-truth
bounding box labels had large variation and detec-
tion is more important than precise localization in
our application. To fairly depict the performance
of our classifier, we draw the Precision-Recall
curves for several IOU and confidence thresholds,
as shown in Figure 2b for Lagrange County, using
one class and our baseline configuration.

We use a loss function that is the sum of two
subloss functions, which is a modification of the
original Yolov3 loss function:

2



Lloss = Lgiou + Lobj

= wgiou(1− GIOU) + wobjnn.BCEWithLogitsLoss

Here, GIOU stands for the computation of the
Generalized Intersection Over Union, which
gives a rough "match" of detected bounding box
to ground truth. The nn.BCEWithLogitsLoss
stands for a Pytorch "cross-entropy" function,
which gives us a classification error between the
detected object and ground truth.

We plot these loss functions in Figure 2e, for
the same baseline configuration. We note that
while we overfit for the Lgiou, we do not overfit
so much for the Lobj . This shows us that we can
improve performance by weighting the sub-losses
in a different fashion.

We try several methods to improve MAP@0.1,
as shown in Table 2a. We find that using K-
means clustering (see Figure 2d) to produce an-
chor boxes that better match our images and
checking bounding boxes to maximize recall
against ground-truth (since K-means may not
find a global optimum) greatly helps improve the
MAP@0.1.

Lowering the importance of the bounding box
accuracies, both in terms of lowering the IOU
threshold and in terms of the lowering the weight
wgiou for Lgiou, also helps. Finally, using resized
images of different resolutions (multi-class train-
ing) also improves performance, since it helps
prevent over-fitting.

4.2 Saliency Maps

To visualize what the model is learning, we com-
pute saliency maps for several images [13]. This
is done by computing the gradient of the loss with
respect to the input pixels. We find in Table 1 that
the network trained on satellite images contain-
ing CAFOs picks up less features than a network
trained on the COCO dataset [8]. We believe
this is because the COCO dataset is larger and
contains more object classes. The larger dataset
helps prevent overfitting and the additional object
classes forces the network to simultaneously learn
multiple things, which allows the network to learn
features that more closely resemble those that hu-
mans use to detect objects. This suggests that we
may be able to extract better features to improve
CAFO detection by solving a multi-object detec-
tion problem instead of a single-object detection
problem. An easy way to do this, though it would
increase training time and compute capacity re-
quired, would be to augment our training data
with images from other satellite and drone im-
agery datasets, such as [10] [2] [9] [14] [1], and
train the Yolo v3 network from scratch on this

data. We could also try including non-satellite im-
agery, such as COCO images, to further increase
the size of our dataset.

Another interesting finding from the saliency
maps is that unlike in the classification setting,
where higher pixel gradients are focused inside
the object of interest, in the object detection set-
ting, pixel gradients are usually evenly spread out
over the entire image. This makes sense as small
perturbations to pixels in any part of the image
could cause the model to detect objects in places
it shouldn’t, affecting the loss value. Addition-
ally, the edges of images usually appear darker
in saliency maps generated by object detection
models, meaning the derivative of the loss with
respect to the edges is smaller. This shows us that
the network has high confidence that edge pixels
mark the end of a region of interest, and thus, no
matter how much you change those pixels, the
network output likely won’t change.

5 Conclusion/Future Work

In this project, we confined our data to a single
county and for a single class (CAFO or no CAFO).
However, our MAP results on the Lagrange and
Duplin counties were quite good, hence we are
encouraged to use these similar techniques across
counties (as well as across states). Training on
more data will prevent overfitting, but will also
add more variation to the type of CAFOs. Hence,
it is not clear whether the test MAP will increase
or drop.

To overcome the class imbalance issue, we can
use FocalLoss, which weights the loss less for
easily classified images (such as background) and
more for the images that are more difficult to
classify. In addition, our sampling of the hyper-
parameter space can be done far more methodi-
cally with a branch-and-search random sampling
method. We anticipate such a search would
greatly help when we add more data. Finally,
we can also consider a more recent detector such
as RetinaNet (using the Facebook Detectron pack-
age), which has been shown to incorporate the
speed of Yolov3 with the performance of mask-
RCNN.

6 Contributions

Minnie put particular emphasis on optimizing
detector performance and establishing the data
preprocessing code base. Jorge ran initial experi-
ments presented in the milestone and later delved
into the saliency map generation.

3



7 Acknowledgements

We thank Professor Daniel Ho, Brandon Ander-
son, and Ben Chugg of the Stanford Law School
for giving us access to their research data/refactor
code and for many helpful comments and discus-
sions. We also acknowledge Mohamed G Mah-
moud for his helpful tips on the project.

References
[1] Cars Overhead With Context. URL: https:

//gdo152.llnl.gov/cowc/.
[2] DIUx xView 2018 Detection Challenge.

URL: http://xviewdataset.org/.
[3] Google Earth Engine. URL: https : / /

earthengine.google.com/.
[4] Cassandra Handan-Nader and Daniel E.

Ho. “Deep learning to map concentrated
animal feeding operations”. In: Nature Sus-
tainability 2.4 (2019), pp. 298–306. DOI:
10.1038/s41893-019-0246-x.

[5] Kaiming He et al. “Mask R-CNN”. In:
2017 IEEE International Conference on
Computer Vision (ICCV) (2017). DOI: 10.
1109/iccv.2017.322.

[6] Minnie Ho and Sage Fernandez. “Object
Localization of Concentrated Animal Feed-
ing Operations”. In: CS231n Class Project
(2019).

[7] Fei-fei Li, Justin Johnson, and Serena Ye-
ung. Detection and Segmentation. May
2019.

[8] Tsung-Yi Lin et al. “Microsoft COCO:
Common Objects in Context”. In: Com-
puter Vision – ECCV 2014. Ed. by David
Fleet et al. Cham: Springer International
Publishing, 2014, pp. 740–755. ISBN: 978-
3-319-10602-1.

[9] Mapping Challenge. URL: https://www.
crowdai.org/challenges/mapping-
challenge.

[10] Object Detection in Aerial Images. URL:
https://captain-whu.github.io/
DOAI2019/dataset.html.

[11] Joseph Redmon and Ali Farhadi.
“YOLOv3: An Incremental Improve-
ment”. In: CoRR abs/1804.02767
(2018). arXiv: 1804 . 02767. URL:
http://arxiv.org/abs/1804.02767.

[12] Joseph Redmon et al. “You Only Look
Once: Unified, Real-Time Object De-
tection”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR) (2016). DOI: 10 . 1109 / cvpr .
2016.91.

[13] Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman. Deep Inside Convolu-
tional Networks: Visualising Image Classi-
fication Models and Saliency Maps. 2013.
arXiv: 1312.6034 [cs.CV].

[14] Stanford Drone Dataset. URL: http://
cvgl.stanford.edu/projects/uav_
data/.

[15] Ultralytics. Ultralytics Github: Yolov3.
Nov. 2019. URL: https://github.com/
ultralytics/yolov3.

[16] Z Zou. Object Detection in 20 Years:
A Survey. URL: https : / / www .
researchgate . net / publication /
333077580_Object_Detection_in_
20_Years_A_Survey.

Figure 1: Example CAFO Image

4

https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
http://xviewdataset.org/
https://earthengine.google.com/
https://earthengine.google.com/
https://doi.org/10.1038/s41893-019-0246-x
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/iccv.2017.322
https://www.crowdai.org/challenges/mapping-challenge
https://www.crowdai.org/challenges/mapping-challenge
https://www.crowdai.org/challenges/mapping-challenge
https://captain-whu.github.io/DOAI2019/dataset.html
https://captain-whu.github.io/DOAI2019/dataset.html
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2016.91
https://arxiv.org/abs/1312.6034
http://cvgl.stanford.edu/projects/uav_data/
http://cvgl.stanford.edu/projects/uav_data/
http://cvgl.stanford.edu/projects/uav_data/
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://www.researchgate.net/publication/333077580_Object_Detection_in_20_Years_A_Survey
https://www.researchgate.net/publication/333077580_Object_Detection_in_20_Years_A_Survey
https://www.researchgate.net/publication/333077580_Object_Detection_in_20_Years_A_Survey
https://www.researchgate.net/publication/333077580_Object_Detection_in_20_Years_A_Survey


Appendix

Table 1: Saliency maps and their corresponding images. Lighter pixels means greater derivative. The
model trained on CAFO images picks up less features than the model trained on the COCO dataset.
Edges appear darker in saliency maps generated by the COCO model.

5



(a) Table of Techniques

(b) (1) P-R over time, (2) MAP/F1 over time, (3) P-R over IOUt

(c) Ground-truth boxes (d) K-means boxes

(e) SubLosses (1), (2), and Total Loss (3)

6


	Introduction
	Dataset and Features
	 Methods and Related Work
	Experiments/Results/Discussion
	Improving Detector Performance
	Saliency Maps

	Conclusion/Future Work 
	Contributions
	Acknowledgements

