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Abstract

A particular sound of interest is almost always overlapping with other multiple
waves from different sources, and if those are at a comparable if not higher ampli-
tude, will lower the ability to interpret effectively when heard. Audio separation
and isolation will allow us to focus on specific sounds of interest. The motivation of
the project is to able to separate and isolate a mixed audio file using deep learning.
The CNN autoencoder model implemented consists of an encoding stage with two
convolution layer followed by a single fully connected layer followed by a decoding
stage consisting of an array of fully connected layers and two deconvolution layers
per class.

1 Introduction

Sound event separation and isolation requires a trained system, when presented with an unknown
sound, to correctly identify and isolate it. We propose a solution to what is commonly referred to as the
"cocktail party problem". The model implemented would learn and apply different filters to an input
in order to obtain a set of audio sources from a mixed audio input. Few example scenarios of what we
have attempted to enable are self-driving cars identifying a police siren, isolating a broadcaster’s voice
from others in a loud crowd, or recognizing an infant crying in a noisy environment. The challenging
aspect of this project was to train with a larger dataset of audio files. We opted for pre-processing
of entire dataset at once and ran in to memory limitations, then we opted for batch processing. The
input of our algorithm is a mixed audio file which consists of different sounds overlaid. The output is
classified to five individual isolated audio files. We relied on PyTorch framework to build this mode
and used STFT as a feature extraction and min-max for data normalization.

2 Related work

Our model attempts to solve the source separation problem by basing its approach to one similar to
that discussed by Chandna, Pritish et al. [7] with their musical separation model implementation,
though was built from scratch due to the scarcity of implementations that tackle the same cocktail
party problem as well as ease of code interpretation and modification. Research done by Stefan
Uhlich, Antoine Liutkus and Yuki Mitsufuji [10] proposes implementing Open-Unmix for music
source separation and the task to decompose music into its constructive components such as stems of
vocals, bass, and drums. This was considered to be the state-of-the-art model [11] to be referred to
for implementation comparisons.
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3 Dataset and Features

We researched on various options for data generation that will allow us to create input and output
audio files for audio separation and isolation. Main audio categories used are Music, Human, Human
Speech, Nature, Effects, Urban, and Noise that are available from Making Sense of Sounds Challenge
2018 database [1], the Spoken Wikipedia Corpora (SWC) [2]. Siren, Baby Cry, and Dog audio files
were obtained from Kaggle [5] and GitHub [2][3].

Audio files for the training and dev sets were synthesised by taking 4 individual sounds corresponding
to the classes (1) Baby Cry, (2) Siren, (3) Dog, and (4) Human Speech from above mentioned
audio categories and overlay them together to create the input sound. We then overlaid 2 randomly
chosen additional audio files to the input audio file for class (5) Other. All individual audio files
are correspondingly classified as output classes. As part of the dataset generation, each audio file
is processed into 5 sec chunks, pitch randomly shifted by 2 or 4 steps, randomly stretched by 1.2
times, and loudness shifted by a randomly chosen value between -5 and +5 points. This ensures that
the model will be trained and evaluated on a robust data set. Generated audio files are 5 seconds
long and encoded using PCM codec in WAV format, with mono channel and sampled at 44100 Hz.
Table 1 below show initial individual audio file classes used to generate 100000 file dataset and the
percentage duplicate counts in generated dataset. We notice that dataset generated is diverse, with
minimal duplicates and overlap.

Number of Audio files per Class that were used for Dataset generation

Crying Baby Siren Dog Speaker Other
Reduced MSoS + SWC 31 16 16 2540 300
MSoS + SWC + Baby + Siren + Dog + Augmented (Baby, Siren, Dog) 111 336 440 2540 1442
Percentage of Duplicate across 100000 Dataset per Class
Crying Baby Siren Dog Speaker Other
Reduced MSoS + SWC 1.935483871 3.75 3.75 0.023622047 0.2
MSoS + SWC + Baby + Siren + Dog + Augmented (Baby, Siren, Dog) 0.540540541 0.178571429 0.136363636 0.023622047 0.041608877

Table 1: Tabular representations of the number of audio files per class before Dataset generation and
the percentage of duplicates across 100000 Dataset

Prepossessing is performed by converting input and output audio files to 22050 Hz, reducing the
duration of audio files to 3 seconds, normalize using MIN MAX parameters, and extracting STFT
from the input and output files. When transforming the audio, a STFT window size of 23 milliseconds
and a hop length that’s fourth the size of window is used. Figures 1 and 2 below demonstrate the
STFT spectrogram representation of a sample input and output files. We used 100000 files as part of
our dataset. We leveraged 92 percent of the data for train set and remainder 8 percent as dev set.

Figure 2: STFT spectrogram of sample output audio files representing Baby Cry, Siren, Dog, Human
Speech, and Other respectively

4 Methods

We implemented an encoding stage which consists of two convolution layers followed by a single
fully connected layer and a decoding stage replicated in parallel for each of our five classes which



consists of a single fully connected layer followed by two deconvolution layers as presented in Figure
3 below.
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Figure 3: Illustrative representation of the model architecture

The layers in the encoding stage correspond to (1) a vertical convolution layer in order to obtain the
frequency feature, (2) a horizontal convolution in order to obtain the time dependent feature and
thus outputting a time-frequency encoding, and (3) a fully connected layer with a Rectified Linear
Unit (ReLU) as the activation which shares its output with the layers in the decoding stage. The
layers in each of the decoding stages per four classes correspond to (1) a fully connected layer that
shares the same dimensions as the encoding horizontal convolution layer for minimal information
loss with a ReLLU as its activation function, as well as (2) a horizontal and (3) vertical deconvolution
layers which share the opposite dimensions of the horizontal and vertical convolutions layers in the
encoding stage. The output of each of the five decoding stages is then concatenated for a ReLU to be
applied to before being used for loss calculation and back propagation.

The model is provided with a mixed source input and five isolated source outputs, where all have
gone through feature extraction and normalization, and attempts to train on the magnitude of the
input STFT while disregarding its phase. It was found that instead of training on both magnitude and
phase of the input STFT, training only on magnitude and passing the phase of the input to each of the
five outputs provided a negligible difference to the signal quality in terms of source-to-interference
ratio between (a) output signal with both its respective magnitude and phase and (b) output signal
with its respective magnitude but input phase. Doing so also provided a decreased the number of
parameters to train over by a factor of 2 as compared to training on both the magnitude and phase of
the input STFT. The model then attempts to learn a set of five different filters that are applied to the
input to obtain five outputs representing the isolated sources, which are calculated as:

e Extract each of the five classes from the concatenated model output, o;
e Divide each of the extracted outputs by the total sum to obtain the filters f; = =s2—

n=19n

e Multiply each of the filters to the input to obtain the predicted isolated output i; = f; * x

Once the filters are applied to the input to obtain the five calculated outputs, the losses are computed
per class by measuring the Mean Squared Error (MSE) between the calculated and the provided



target output. The individual losses are then summed up together for the model to attempt to optimize
using the ADAM [8] optimization algorithm. The Adaptive Learning Rate Method (ADADELTA)
optimization algorithm proposed by Zeiler, Matthew D [12] was also experimented with and attempts
to adapt the learning rate dynamically over time per parameter.

S Experiments/Results/Discussion

During the experimentation iterative process to identify the optimal model variables, we came up with
a set of parameters with which we evaluated in combination of one another for the model training. A
subset of those parameters are summarized in Table 2 below, with which they contributed to the (1)
size of the hidden units (FC Features, Horizontal and Vertical Conv. Filter Sizes), (2) size of the input
(STFT Size, STFT Hop Length, Sample Rate), (4) loss optimization (ADAM and ADADELTA as
well as their respective parameters), (4) training iterations (Epochs), (5) normalization techniques
(MIN MAX and CMVN), and (5) dataset size.

Parameters Options
Optimizer ADAM ADADELTA
ADAM Learning Rate 0.01 0.005 0.001
ADADELTA rho 0.98 0.95 0.9
STFT Size 1024 512
STFT Hop Length 256 128
Horizontal Conv. Filter Size (1,513) (1,257)
Vertical Conv. Filter Size (15, 1) (350, 1) (150, 1)
FC Features 128 376
Normalization MIN MAX CMVN

Table 2: Tabular representation of the subset of different parameters iterated over

Several combinations of those parameters were then investigated with which a subset provided
desirable results. The bayes optimal error in this case is one where the avg. loss is 0 and with
further evaluation we determined the human level to be an avg. loss of around 35 for an isolated
output with an acceptable interference and signal quality reduction. The base model with which
we started with was built with zero padding and convolution layers as well as optimized the loss
on the model output directly. Using this model produced a train avg. loss output of 250000 which
is significant and entails a massive bias issue. The purpose of the zero padding along with the
convolution layers in the decoding stage was to maintain the size of the waveform input in order to
recreate the isolated output. Maintaining the same purpose, we realized that using deconvolution
layers is a more preferable method to approach this as it attempts to reverse the convolutions in the
encoding stage. This decreased our train. avg. loss to 40000, which was a desirable drop, though
still far from the ideal. We then attempted to optimize the loss of the model on the filter of its output
as proposed by Chandna, Pritish et al. [7] and described in the earlier section and we were able
to observed a train. avg. loss of 1700. We then applied ReLU to the concatenated model output
and used ADAM [8] as our loss optimizer and we started seeing the train avg. loss decrease to 240
while observing a dev. avg. loss of 272. With this we were able to chip into our bias issue though
now observe a variance issue. Focusing on decreasing the bias for the time being, we attempted
to optimize training by using CMVN instead of MIN MAX as a normalization technique, which
resulted in a train avg. loss of 219 and a dev. avg. loss of 204 and thus decreased our bias further
though now realize that our dev. set might be easier to solve with its decreased loss compared to the
train avg. loss. Observing the dataset distribution of classes, we identified that approximately 5% the
waveforms mixed for each of classes (except for Other) appear to be populated with useful data while
the remaining 95% is silence. This can be attributed to how on random our dev set seems to be easier
to predict especially if a large percentage of it is based on silence, considering that we were training
on a large number of silent waveforms. Mediating this issue was possible by making sure that there
is a 70/30 split of waveform data to silence for each of the classes (except for Other).

Following that with several sets of experiments, the final model which was settled upon was then
equivalent to the one detailed in the earlier section, which in turn provided us with a train avg. loss of
60 and a dev. avg. loss of 129, implying that the model is overfitting as we see a variance issue and
necessitating a bigger dataset to train on to remedy this issue. Table 3 below presents a summary of
the subset of experiments evaluated.

For the model prediction evaluation, we are using the mir_eval metric as proposed by Raffel, Colin, et
al. [9] as the library provides us with the capability of evaluating an estimated source to a target one



Experiments Train Avg. Loss Dev. Avg. Loss
A Exchanged Zero Padding + Convolution Layers with De- 40000 -
convolution Layers

B Training on Filters of the Model Output 1700 -
C Using ADADELTA as Loss Optimizer and apply ReLU to 240 272
the concatenated model output
D Exchanged MIN MAX with CMVN Normalization 219 204
E Increased size of FC Features to 376 237 225
F Exchanged CMVN with MIN MAX and ADADELTA with 66 129
ADAM at LR 0.001 as well as decreased size of FC Features
to 128

Table 3: Tabular representation of the different parameters iterated over

when dealing with source separation tasks, based on the Signal to Distortion Ratios (SDR), Source
to Interference Ratios (SIR), and Sources to Artifacts Ratios (SAR). Running a few of the models
experimented with earlier across their respective dev sets, we can then observe the evaluation metrics
per class as shown in Figure 4 below.
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Figure 4: Evaluation metrics for each class per experimented model

We can observe that the dev. avg. losses determined earlier seem to correlate with the evaluation
metrics presented here, as we can see that each of the SDR, SIR, and SAR for Model D seems to be
the best compared to Models C and E. Saying this however, we can perceive that the SDR for all of
the models experimented present an average of around -150, which entailing that the ground truth
target is not too similar to the estimated output. The SIR presents a better results though on average
appears to be around -10, entailing that the estimated output shares some portions of the waveform
with the other estimated outputs, as in we will be hearing some interference amongst the classes. This
however might not a big of an issue since the SAR provides us with a result of around 8 on average,
meaning that the isolated output is glitch free with minimal artifacts present. Comparing our results
to published implementations was difficult due to the scarcity of audio separation implementations
that consider universal sounds as opposed to focusing on music isolation. Nevertheless, since the end
goal is the same and the class human speech exists as vocals in those implementations, we present in
Table 4 below a comparison of the results of our implementation to that of Open-Unmix [10], which
was reported as the state-of-the-art model by the Signal Separation Evaluation Campaign 2018 [11].
We can see that even though our SAR is superior to the model, both the SIR and SDR deteriorate the
signal isolation quality as discussed above and as compared to the Open-Unmix model.

Model SDR SIR SAR
Open-Unmix 6.32 13.33 6.52
CNN Model -139 -18.7 8

Table 4: Comparison of state-of-the-art Open-Unmix model and our implementation

6 Conclusion/Future Work

Our main objective of this project is to try to classify and isolate a mixed audio input file using STFT
for feature extraction and MIN MAX for normalization. So far, we were able to achieve the expected
results with five different categories, further insights are required to train the model with a larger
dataset. Future work includes: (1) obtain a Mel Spectrogram representation of the input transforming
the sounds onto the Mel Scale, (2) training the model on a larger data set to remedy the variance issue
observed, (3) explore the use of LSTM in order to train the network on shorter waveforms for near
real-time inference, and (4) accounting for discriminatory loss terms per class to further decrease
SDR and SIR.



7 Contributions

Through a set of different tasks, efforts and contributions to the project have been distributed equally
amongst all members of this group. Table 5 below details the tasks taken up by each team member.

Member Task
Ahmed Model Research Feature Extraction Implementation Model Implementation Training and Evaluation
Pratap Model Research Dataset Research Dataset Generation Training and Evaluation
Muni Model Research Feature Extraction Research Normalization Implementation Training and Evaluation

Table 5: Task breakdown per team member
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