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Abstract

The large model size of modern Deep Learning tasks such as object detection
presents challenges for model deployment on edge devices due to significant
resource constraints of the embedded hardware. In this project, we explored tech-
niques such as loop fusion and post-training quantization in an effort to achieve
real-time performance while maintaining prediction accuracy under limited com-
putational resources. We started with a baseline model of YOLOv3 pretrained
on COCO dataset and measured its prediction metrics using mean average pre-
cision(mAP) and inference time. Next, we applied transfer learning to a smaller
dataset to make a comparison. Lastly, we provide a detailed analysis of experiment
results, measured both on Desktop and edge environment.

1 Introduction

Due to the advancement of technologies such as autonomous driving, human vision augmentation,
humanoid robotics, there is a rapidly increasing demand for fast and accurate object detection
algorithm that can run on edge devices in real-time. The state-of-the-art solution uses huge deep
neural network models which require billions of operations per inference. Moreover, such large
models are extremely memory intensive, putting more pressure on resource limited mobile devices.

Addressing this challenge through tuning deep learning architectures to strike an optimal balance
between performance and accuracy has been a popular research field over the past few years. We
sought to explore this trade-off by deploying object detection models onto an edge device for
measurement of real-time performance. We selected NVIDIA’s Jetson Nano. The Nano is the
smallest offering in NVIDIA’s Jetson line of specialized SOCs for AI systems. It offers a CPU and
GPU integrated into the SOC and has a computational power of 472 GFLOPs, at a power draw of 5
Watts and price of 99 dollars. These specifications fall within what one might reasonably consider for
a mass-available edge device, while offering significantly more computational power than other small
embedded devices like the RaspberryPi 3 B+.

2 Related Work

We looked into several real-time object recognition architectures that could potentially be used for a
Jetson Nano, including publications that present work in MobileNetv2, YOLOv3 and their variants,
as well as Faster R-CNN. In general all of these object detection models struggle with the trade-offs
between speed and accuracy. Indeed, some models, like MobileNetV2 were designed with speed in
mind utilizing Depthwise Separation Convolutions are used to reduce the computational overhead.
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Similar work has been done by Hoang et al and published in 2019, where a YOLOv3 model was
established and retrained while maintaining real-time performance and original accuracy on a laptop
setup [1]. On Rasbery Pi, they achieved the same accuracy at the cost of real-time performance.

Stemming from this, we opted to use the YOLO model and attempt to achieve the opposite: increasing
real-time performance at the cost of hopefully minimal accuracy loss. We liked that it had not
previously taken steps to greatly sacrifice accuracy for speed, although YOLOv3 did start to explore
this trade-off with the input size [2]. Additionally, we could not find any official documentation on
NVIDIA’s website listing performance benchmarks on the NVIDIA hardware [3].

Recall that YOLO is a single neural network that does only 1 inference per input image, therefore
easier to train and has more potential to generate real-time inference. YOLO contains 24 convolutional
layers connected to 2 fully connected layers [4]. Literature [5] has identified several limitations of
YOLO, such as its strong spatial constraints on bounding box predictions since each grid cell only
predicts two boxes and can only have one class, as well as it penalizing errors the same regardless
of the size of its corresponding box and its impact on IOU. The most recent update, YOLOv3, uses
a logistic classifier to calculate the probability of the object that matches a certain label instead of
softmax functions. This removes the implicit assumption that each output only belongs to exactly
one class, therefore enabling the model to generalize better [6].

3 Dataset and Features

As our main goal is not to realize any particular object detection task, collecting and labelling data
manually is out of the scope of this project. We found potential datasets from several sources: KITTI
, MS COCO, and VOC datasets, all providing labeled images for deep learning network training.
Due to better accessibility and smaller size, we chose to start with VOC dataset for training and
validation. The dataset comprises 16.5k training images and 5k validation images in 20 object classes.
Input images are normalized and reshaped into fixed shapes that are multiples of 32 in order to
accommodate YOLOv3’s grid-cell based predictions. In our work, we experimented with three
different input shapes: (320, 320), (416, 416) and (608, 608).

To get a higher mAP, we tried to pretrain YOLOv3 on a larger dataset such as MS COCO which has
83k training, 5k validation images and 80 object classes, and apply transfer learning on the relatively
smaller VOC dataset. Same pre-processing steps are applied to input images.

4 Methods

4.1 Learning Algorithm

We use the latest version of YOLOv3, whose architecture is shown below in Figure 1.

Figure 1: YOLOv3 architecture (text modified by our team) [7]

Loss functions are an important criterion for evaluating the performance of a model. Evolved from
the multi-part loss function of YOLO:
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where 1obj
i denotes if object appears in cell i and 1obj

ij denotes that the jth bounding box predictor in
cell i is “responsible” for that prediction [5].

For calculating class confidence, YOLOv3 switched from softmax to independent logistic regres-
sions(sigmoid), enabling each box to have multiple classes. Moreover, YOLOv3 changed the last
part of the loss function responsible for class mismatch from MSE to cross-entropy loss function.

We set up the training to iterate over 20,000 batches to minimize the above loss function. Training
starts from scratch with randomly initialized data. Learning rate starts with 0.001 with momentum =
0.9 and decay = 0.0005. Data augmentation is significantly used by randomly changing the exposure
and saturation of the input images by a factor of 1.5 and hue by a factor of 0.1. We also randomly
rotated and scaled the inputs up to 15%.

4.2 Training Via Transfer Learning

To improve mAP, we trained our model on VOC dataset from pretrained weights on COCO, which
contains the backbone of Darknet-53 [8] for feature extraction. Since the dimension of the last layer
of YOLO depends on the number of classes, we have to modify the configuration of output shape
correspondingly according to the shape (nbatch, S, S, (4 + 1 + nclass) ∗ nanchor). where S is the
size of the grid-cell.

4.3 Tools and Framework Pipeline

We used Darknet[9] for mAP calculation and training our models in full precision on the VOC dataset.

For optimizations, we used TensorRT[10], an real-time inference framework from NVIDIA. We
started from NVIDIA example code which converts YOLOv3-608 model/weights into ONNX format
and then builds a TensorRT engine for inference speed testing. We modified this code to additionally
build the YOLOv3-320, and YOLOv3-416 size models and YOLOv3 models trained on VOC. We
then updated it to process the COCO and VOC datasets and do the appropriate post processing to
save out predictions.

To calculate the mAP for a given test, utilized code from another public github[7], adjusting our post
processing to provide a compatible format.

The same software packages / environment were setup on a desktop with an RTX 2060 GPU and
on the Jetson nano for inference testing. Setup on the Nano proved to be particularly challenging as
many off-the-shelf SW packages are not compatible with embedded HW structure. This was the main
driver in choosing TensorRT for optimization vs. other popular packages such as Tensorflow-lite.
Due to struggles with package management, especially around compatible NVIDIA GPU libraries,
we learned about Docker and used it to set up environments.

5 Results and Analysis

5.1 Metrics

We used mean average precision(mAP) to evaluate our model. It is calculated by taking the mean
of the average precision (AP) of all object classes. AP can be calculated by taking the area under
precision-recall curve(AUPRC) for all classes, where True Positives and False Positives are evaluated
using IoU between predictions and ground truths:

AP =

∫ 1

0

p(r)dr, mAP =
1

C

C∑
i=1

APi
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Inference time is a measure of the inference execution only, and does not include the pre or post
processing steps. Measurements are made on a RTX 2060 GPU and a Jetson Nano, and inference
time (ms) and mAP (%) are recorded in Figures 2 - 4. As a comparison, we also measured pretrained
weights performance on COCO dataset.

Figure 2: YOLOv3 Performance on COCO dataset on RTX 2060 GPU

Figure 3: YOLOv3 Performance on COCO dataset on Jetson Nano

Figure 4: YOLOv3 Performance on VOC dataset on RTX 2060 GPU

5.2 Testing of YOLOv3 on COCO Dataset on Desktop RTX 2060 (RTX) and Jetson Nano
(Nano)

From Figures 2 and 3 above, we see that our baseline measurements of YOLOv3 are as expected,
roughly reproducing the mAP results reported by Redmon’s paper [2]. Since the CNN weights are
independent of input shape, we can directly measure the trade-off between inference speed and mAP
by adjusting the input resolution without re-training the weights. We can see that on both the RTX and
Nano we pay significant speed costs, approximately 2x and 3x respectively, for marginal increases in
mAP. The Nano fares worse given it’s limited compute power and resulting sensitivity to increases in
FLOPS.

Next we measured YOLOv3 performance with for non-quantization optimizations like layer fusion
(LF) and kernel tuning (KT). The speed increased significantly (2-3x for RTX and 1.2x for Nano) but
the mAP score dropped significantly. This was quite surprising, since the applied optimizations should
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only work to increase arithmetic intensity and reduce loads and stores to memory. Interestingly,
a review of NVIDIA discussion boards indicated that this may be due to a bug in TensorRT’s
implementation. It was potentially fixed in the latest release (6.0), however, we retested in a new
environment using 6.0 and got the same results.

Lastly, we measure performance including 16-bit floating point quantization. We observed a negligibly
small decrease in mAP with another significant boost to inference speed ( 2.5x for RTX and Nano).
This result is reasonable as we would expect that the error introduced by precision loss to be minimal
in a large NN like YOLOv3 since less importance will be given to any one weight value. Furthermore,
reducing precision loss will have a greater impact on small weight values (due to the nature of floating
point), but these values inherently contribute less to the output calculation.

In terms of speedup, we see that the Nano derived limited speedup benefit from this from LF and KT
optimizations, as opposed to the RTX. This makes sense as the Nano is likely already compute limited
and thus can’t derive the same benefits from increased arithmetic intensity. Additionally, the RTX
hardware includes TensorCores allowing TensorRT to to select more efficient kernel implementations.

5.3 Testing of YOLOv3 on VOC Dataset

As mentioned in 5.2, loop fusion seems to reduce mAP significantly on COCO dataset. We are
curious to see how the same transformation will impact performance on a different dataset. Therefore,
we took the pretrained weights on COCO and retrained them on VOC dataset which has a smaller
number of classes. For this dataset, the model does not need to learn subtle changes between similar
classes, thus our theory was that it would be more robust to the error introduced by optimization
methods. We repeated our inference time and accuracy measurements on the YOLOv3 model trained
for VOC. The results can be seen in Figure 4. An average mAP of 76% is obtained as baseline. After
optimization, we observe a similar improvement in the inference execution time, and a smaller drop
in accuracy (albeit still relatively large at around 12%). The smaller drop in accuracy would imply
that this model was less sensitive to the TensorRT optimizations. Since VOC dataset has only 20
classes, it is relatively easier to get a higher mAP on VOC dataset compared to COCO dataset because
the model does not need to recognize similar classes that are hard to distinguish. Moreover, having
fewer classes did not help with inference speed as expected because the reduction in computation of
the last layer is negligible compared to the entire model.

6 Conclusion and Future Work

Overall, we found that applying optimization techniques such as quantization could provide for a 2x -
6x increase in inference execution speed. Such performance gains could be critical for real world
deployment on an edge device. Of course, in our testing this came with a significant drop in accuracy,
which may ultimately outweigh such speed gains.

Our primary next step would be to setup a new optimization toolchain that does not use the TensorRT
framework. The large drop in mAP we observed is highly suspect and we would want to independently
recreate it. Afterwards, future work could be directed into the exploration of 8-bit integer quantization.
This is a more aggressive precision reduction method that will further enhance the performance,
but the exact degree of trade-off remains to be examined. The Jetson Nano does not support INT8
operations, but another embedded device, like Google’s Coral, could be used instead.

7 Contributions

Elias Stein: SW environment setup on Desktop and Jetson Nano. Primary packages for support
include, Tensorflow-GPU, CUDA-10.0, Cudnn 7.5, TensorRT 5.1.6. Setting up the ONNX-TensorRT
pipline and reworking the python scripts to support multiple permuations of YOLOv3 models (sizes
and datasets), and to handle processing of the COCO dataset and VOC dataset.

Siyu Liu: researched and explored different dataset, trained model and tuned hyperparameter using
Darknet on AWS, measured model metrics mAP on desktop, wrote script to generate ground truth
bounding box from coco website.

5



John Sun: literature review on TensorRT various models including MobileNetv2, YOLOv3, Faster
R-CNN, and ResNet, and their trial implementation in Colab, AWS setup and management, results
post-processing and presentation, communication with course staff .
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