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Abstract

This project looks at utilizing free-text diagnosis notes to predict patient outcomes.
As a baseline, ICD9 code are mapped to mortality using logisitic regression. Fol-
lowing this, ICD9 codes are used as the input in a multilayer-perceptron classifier
to predict mortality. In contrast to this, a NLP approach is taken utilizing the free
text notes where BERT is used for pretraining and then a simple linear classifier
layer is used to output hospital mortality.

1 Introduction

Electronic Medical Records (EMRs) are the main form of storing information crucial to patient care
such as unique identifiers, comments from caregivers, and lab test results. The amount of information
stored within these EMRs provides large datasets which many data scientists have used to unearth
trends linking different factors of patient care to onset of different forms of disease, or in our case,
mortality rate.

EMRs contain information that can be generally abstracted to a couple of categories: coded and
non-coded. Work has been done in the past with coded items which are easier to work with since
they are generally binary or categorical variables. Indeed, in this work we rely on this to establish
our baselines. The piece of EMRs worked with less often is their free-text information. Physicians,
surgeons, and other major caregivers will often chart free-text and then nursing staff or medical
staff will later code this information. This work primarily wants to focus on the efficacy of using
this free-text information and seeks to compare the accuracy of using free-text as opposed to coded
information. For the logistic regression and MLP-classifier, the inputs are the ICD9 codes and the
outputs are whether the patient has expired or not. For the NLP piece of this project, the input is the
doctors’ free-text diagnosis notes and the output is once again, the mortality indicator.

Hospitals have a unique incentive to care about mortality prediction since ICU deaths count as
inpatient deaths. Many use systems such as trauma scoring already. Studies have shown, though, that
mortality predictions work better than trauma scoring in ICUs. Currently, mortality prediction involve
a multitude of factors and complexity and, yet, are increasingly being used for clinical decision
support. Consider the widely accepted Abbreviated Injury Scale which requires twenty minutes per
patient.

The first scores proposed for mortality prediction were APACHE and SAPS and these were hand-
computed with doctors determining the important features. Most ICU mortality predictors today rely
on logistic regression. SICULA, created by Pirracchio et al. (2015), used multiple learning algorithms
to get better mortality prediction and performed better than any of its component algorithms alone.
This hinted at the usefulness of more robust learning algorithms in this space.

While critically ill patients are less than 10% of patients, they account for nearly one percent of the
gross domestic product. A better mortality prediction algorithm to aid medical providers and families
has much usefulness.
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2 Dataset and Features

The data used here is from MIMIC-III (Medical Information Mart for Intensive Care III), containing
information recorded in various EMRs from Beth Israel Deaconess Medical Center’s Intensive Care
Unit such as demographics, vital signs, laboratory tests, and more. There are about 1.1 million rows
in this set and several columns represneting features. We choose some very specific features listed
below.

The dataset includes a flag HOSPITAL_EXPIRE_FLAG, which has a value of 0 or 1 depending on
whether a patient died in the hospital or not. The goal of this project is to predict mortality using
free-text using the free-text provided in columns such as DIAGNOSIS: free text doctor’s notes with
no systematic ontology and which can be extremely vague.

The baseline algorithm is logistic regression. The HOSPITAL_EXPIRE_FLAG is the output and
the input is the ICD9_CODE which is a categorical value where certain codes are linked to certain
diagnoses (e.g. 280 is coded to anemia).

Most of the data processing was able to be accomplished using PANDAS and

The data was provided in multiple disjoint data sets. First, the data had to be merged using the
patient ID as the linking variable. Following this, it was necessary to set up one-hot encoding for
the categorical variable, ICD9_CODE column, since it would create a very sparse vector otherwise.
From here, it was possible to do logistic regression and get some preliminary results. This same
dataset could also be used for the MLP-classifier.

For the NLP approach, the data was a bit different. I removed all columns except ’DIAGNOSIS’ and
’HOSPITAL_EXPIRE_FLAG’. From here, I was able to create tensors and later could use scikit’s
train_test_split to construction the necessary training and testing sets.

3 Methods

My code is at https://github.com/gbanerjee01/DLproject for the duration of this class. The dataset is
not provided as you must get a special access granted by doing the required trainings listed on the
MIMIC website.

3.1 Logistic Regression

Logistic regression is a form of binary classification with model:

log
p(x)

1− p(x)
= β0 + x · β

where x represents the predictor variables, β represents the predictors, and p(x) is as follows:

exp(β0 + x · β)
1 + exp(β0 + x · β)

We predict Y = 1 when p ≥ 0.5 (when β0 + x · β is nonnegative) and Y = 0 when p < 0.5 (when
β0 + x · β is negative). The decision boundary that separates the two classes is the solution of
β0 + x · β = 0, and the distance of each point from the decision boundary is given by β0

||β|| + x · β
||β|| .

Because logistic regression is used for classification problems, the outputs correspond to mortality
predictions given ICD9-CODE. This is the "simplest" algorithm used and sets the baseline.

3.2 Neural Networks

Neural networks work with some type of input, several hidden layers and activation functions
which then result in an output. There is a loss minimization happening through forward and back
propagation. In my usage of scikit’s MLP classifier I set the parameters to be solver=’lbfgs’, alpha=1e-
5, hidden_layer_sizes=(5, 2) for the primary model parameters. The train/test split ratio is 0.8/0.2.
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The data representation in this case is PANDAS dataframes into Numpy arrays. According to SciKit’s
page, the "MLPClassifier trains iteratively since at each time step the partial derivatives of the loss
function with respect to the model parameters are computed to update the parameters."

3.3 NLP and BERT

Bert is a Google pre-training approach that allows us to use a lot of transfer learning as identified in
lecture and apply to our own smaller dataset. This allows word embeddings to be handled by BERT
as long as we provide our data in appropriate tokenized format. I handled most of the architecture
using a PyTorch implementation using Google Colaboratory since it was easiest there. Unlike a
LSTM-RNN approach, BERT is a Transformer. The power of BERT is that it is a contextual model
and not context-free meaning we can harness the power of relationships in our data. I used the Kana
(2019) advice and implementation type which suggested the Hugging Face PyTorch Interface for
BERT with a TF backend. I used an Adam optimizer with a learning rate of 2e-5 and 4 epochs
since this seemed to work in other implementation of BERT. Changing this around did not appear to
help. Once the BERT implementation was brought in, and the data was properly formatted, then the
classification could be done. Since the data itself wasn’t too large, this went fairly fast.

4 Results and Discussion

The logistic regression on ICD-9 codes has an AUC that is 0.43. When normalized, nearly 100%
of 0’s and 1’s were predicted as 0’s, saying all the patients were predicted to survive. The actual
classification of the algorithm was poor. The first hypothesis for this is that deaths were not represented
significantly enough in the data and were deeply overshadowed by the 0 flag in quantity.

The MLP-classifier, on the other hand, did much better. There was a 0.99 score on the neural network
implementation. The first thought here is that there might again just be severe overfitting or perhaps
the majority of patients fall into the same categories of codes, thereby misrepresenting the complete
dataset if the test dataset cannot truly uniformly draw from the entire dataset.

Compared to this, the BERT classifier performed more poorly. This may be due to the extreme
medical nature of the DIAGNOSIS free text column and on further examination some of the technical
terms were incorrectly represented in the embeddings and were fragmented. It might also be that the
actual notes are in fragments leading to this type of poor result.

5 Conclusion/Future Work

I think it would be really interesting to perform Principal Component Analysis to figure out why the
MLP classifier did so well. Furthermore, it would be a proper next step to use the much larger body
of text found in the column ’NOTES’ for each patient and see how extraneous information in free
text form might perform at this problem.

6 Contributions

Since I was the only team member, I did the whole project. All of the code inspiration and help I got
(mostly for BERT and TensorFlow) is in the citations.
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