) (CS230

Text Replacement and Generation in Images Using
GANs

Andrew Sharp Christian Gabor Joseph Son
Department of Computer Science Department of Computer Science Department of Statistics
Stanford University Stanford University Stanford University
awsharp@stanford.edu gaborc@stanford.edu joeson@stanford.edu
Abstract

Currently, it is not easy to replace text in images while maintaining the same style
and font. Replacing logos and text appearing in real world images requires manual
labor. In this paper, we describe a GAN which automatically replaces a character
in an image with another input character while maintaining the original image style.
We also extend this model to work on longer strings by stitching together different
input characters to create an image containing the desired string.

1 Introduction

In this project, we build upon existing GAN [1]] research and explore conditional GAN (cGAN)
[2]] architectures to replace a character in an image with another input character. Specifically, the
input to our generator is an image containing one of 62 characters (0-9, A-Z, a-z), as well as a label
representing another one of these 62 characters. The goal of the model is to output a version of the
original image in which the original character has been replaced by the desired input character while
maintaining the style (e.g. background, font color) of the image.

We believe this work could serve as the foundation for wide-scale applications such as producing
synthetic data for optical text recognition in order to automatically increase the size of existing
datasets. This work could also be used for quick replacement of text in graphic design, such as for
logos, animations, or video games. One potential real world application that we see for such synthetic
data is modifying route numbers on images of buses, which could be used to produce training data so
that visually impaired people can get an OCR recognizer app for bus routes without needing to ask
other people.

2 Related work

Font generation: We looked at papers which use neural networks to produce new fonts. Atarsaikhan
et al. [3]] use a CNN architecture which takes a text image and adds style to it based on either another
font or a simple style image involving a black pattern on a white background. However, this setting
is much simpler than our intended setting of replacing text in real color images and also does not
involve modifying the characters in an image, instead only changing their style. We also looked
at work in style-consistent font generation using a GAN approach [4]]. This paper used a GAN to
produce new fonts (consisting of all 26 uppercase letters), which is similar to our goal of being able
to produce any desired character in a given style. However, they were not attempting to match any
existing fonts and were instead only generating completely new ones, and they were again limited to
black and white images.

CS230: Deep Learning, Fall 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Conditional GANs: The most similar work to our intended model was that of Azadi et al. [5],
who used a conditional GAN to produce a complete font given only a few examples of letters in
each desired style. While they were still limited to more structured images of isolated characters
on white backgrounds, this problem was fairly similar to ours, with the most significant difference
being that their model was given several examples of each font while ours only sees a single
character. This motivated us to use a conditional GAN [2]] for our model as well. A conditional GAN
(cGAN) involves providing both generator and discriminator a class label input so that when that
label is provided, the discriminator ground truth probability is conditioned on a certain class image
distribution. Conditioning the data this way can allow the generator to make images closer to the
label distribution when it attempts to fool the discriminator. The effect of this is that we can provide
the conditional class as input to the generator to get an image that looks like the particular class we
want as output. Another paper which used a conditional GAN approach to font style transfer was
Bhunia et al. [6], which again attempted to transfer certain text to match a new font from which only
a few characters have been seen. This paper was again limited to black text on white backgrounds
and required several character examples from the desired style, but it provided further evidence that
conditional GANs are well-equipped to transfer a partially observed font style to new letters.

3 Dataset

We use the Chars74K dataset [[7] which has images of 7,705 characters cropped from larger natural
images. The images in the dataset have a wide variety of sizes because each character image’s
resolution is maintained from its larger original image. Each of these characters has one of 62
possible labels (because it could be an uppercase letter A-Z, a lowercase letter a-z, or an integer
0-9). The images consist of RBG channels , and for preprocessing, we normalize the images to have
intensity values in the range [—1, 1] and resize them to size 28 x 28. We used 400 of these images as
our evaluation set for the style images we trained the generator to match and the rest were used for
training the discriminator to recognize different characters. Figure 1 shows some example images.

Figure 1: Example character images from Chars74K

4 Methods

Our initial model is a traditional cGAN, which uses a target character class which is input into both
the discriminator and the generator of a DCGAN architecture and turned into a class embedding.
This embedding allows us to use the target class label to select the desired character output. The
generator then attempts to produce an image which the discriminator will believe comes from the
target class. The overall structure of this model can be seen in Figure 2, and the details of each layer
are found in Figure 3.

Source Image ‘ Ground Truth Data

F

j —
—

Conditioning on Class Label

" LDS) = Categorical_CE(DS(GT), GT labvels)

Real ~ (0,1)

Discriminator Where GT = Ground Truth

[

St
Generator

Y~(1,.62) i I i CE = Cross Entropy Loss

{ue) = D(Fake) + CE(DS{Y], 1) + L2_Norm(Source - Pred) J L(D)= CE(D(GT), 1) + CE(D(G). 0)

Figure 2: Initial cGAN architecture (left) and updated architecture with softmax discriminator (right)

Figure 3: Keras architectures: Discriminator (left), Generator (middle), Softmax Discriminator (right)

Our improvement upon the basic cGAN architecture is an embedding in the generator that takes both
the replacement target character and the target style image to which it should maintain similarity. We
use several CNN layers to down sample the source image before up sampling with the input label and
noise. The discriminator takes the target class label and will decide if the output image in the new
style is realistic conditioned on the target label. We later added a second softmax discriminator to
force the generator to produce the desired output class.

To maintain style, we use an L2 distance metric between the generated and source images in the
generator loss function. This forces the GAN to output similar background and font colors. The loss
contribution is weighted with v which must be carefully tuned to not overpower the discriminator loss.

We then stitch these stylized generated characters into a text string and use Gaussian smoothing on
the borders to get a functional text replacement. This is a first attempt at producing a full output
string, while a later improvement could involve a larger model to take in full string images.

5 Experiments/Results/Discussion

We evaluated two different model architectures: first, cGAN with just the source embedding; second,
cGAN with an additional softmax target class discriminator. The hyperparameters that we tuned
include mini-batch size, generator learning rate, discriminator learning rate, v to scale L2 norm
between input and output image, and 3 to balance the softmax contribution to the generator loss.

c¢GAN with Source Embedding: Specifically, we run the cGAN with source embedding using the
following hyperparameters: mini-batch size: 64; generator learning rate: 6e-4 (Adam); discrimi-
nator learning rate: le-4 (Adam); and gamma: Se-3.

We use a mini-batch size of 16 so that we are able to make more finely tuned gradient adjustments.
We find that tuning the v hyperparameter has the largest effect on the results of the GAN. As such, we
looked at values larger and smaller than Se-3 but generally found the best results with 5e-3. Looking
at the actual results of the GAN, we can see that even in the best hyperparameter setting, most of the
generated images struggled to match the target label. We evaluated a set of 400 images produced
by the generator and found that only 1.25 percent had successfully been changed to the desired
character. However, if we look at the sample in Figure 4, we have a few instances where there is a
clear matching.

In addition to visually analyzing the results of the model, we also can look at the log loss values and
accuracy of the generator and discriminator. We see that the accuracy of the discriminator on the fake
images stays relatively high while the accuracy on the real images is lower. Ideally, we would want
to see these accuracies converge around 0.5, indicating the discriminator cannot tell the real images
from the generated ones.

c¢GAN with Softmax Discriminator: Adding a softmax discriminator improved our initial model
performance, but we found that it was more challenging to train the generator by selecting hyperpa-

rameters. Our generator loss was the following (where 5 = 0 in our initial model):
Loss(G) = BinaryCrossEntropy(D(G), 1)+pBinaryCrossEntropy(Dse fimas[targetlabel], 1)+v||Source—G||2

where Do ttmaz [targetlabel] represents value at the index of target label in the softmax output
vector. The generator will minimize this part of the loss when the softmax is confident the image
matches the desired target label. The loss functions for the discriminators are given below:

Loss(D) = BinaryCrossEntropy(D(GroundTruthImg), 1)+ BinaryCrossEntropy(D(G),0)

L0sS(Dso ftmaz) = CategoricalCrossEntropy(Dsoftmas (GroundTruthImg), GroundTruthLabels)

The generator model does not contribute to the softmax discriminator loss, as the softmax discrimina-
tor only trains on the groundtruth data. But this discriminator still contributes to the generator loss,
while both are training from initialization.

Log Loss

—— g_loss
—— d_loss_real
—— d_loss_fake

T T T T
500 1000 1500 2000

Accuracy

1.0 A

0.8 1

0.6 — d_acc_real
—— d_acc_fake
0.4 1

0.2 4

500 1000 1500 2000
epoch

o

Figure 4: Results, loss, and accuracy for initial cGAN model

We run the cGAN with additional softmax discriminator using the following hyperparameters: mini-
batch size: 16; generator learning rate: 6e-4 (RMSProp); discriminator learning rate: le-4
(Adam); softmax discriminator learning rate: le-5 (Adam); gamma: 5e-2; and beta: 0.2.

Here we adjust the gamma parameter to be smaller so that we penalize the distance from the original
image less. We also reduce the learning rate of the discriminator so that the generator has more time
to improve and produce more realistic images. We found that this model produced good images
much faster (around 100 epochs) than the initial model (which had to train for at least 1000 epochs to
produce good results).

Looking at the results output from this model in Figure 6, we see that there are also instances where
the image is not able to match the target label. However, we find that by adding the additional softmax
discriminator, we are able to get more examples of successful images generated with convincing
matching of the target label. Our evaluated accuracy on the 400 source/result pairs generated by this
new model was 17 percent, a significant improvement over the non-softmax model. Some of the
more convincing examples are shown in figure 5.

| -

source w source € source K

e

& o
L3

Figure 5: Example source/result pairs output by the softmax model

Again, we can look at the log loss values and accuracy of the generator and discriminator for the
softmax model. We see from the graph of the losses that the discriminator quickly overpowers the
generator, which is also reinforced by the graph of the accuracies (the accuracy of the discriminator
on both real and fake images almost reaches 1.0).

Log Loss

0.6 1
—— g_loss

0.4 4 —— d_loss_real

w
* — d loss_fake
. E e ; * 7
F 6 2‘0 4‘0 6b BIU 160

source A
Accuracy

1.0

0.8 1
—— d_acc_real
0.6 1 —— d_acc_fake

r
-
B i
e,]
: [041
i [
- L) T T T T T T
!. - il - 0 20 40 60 80 100

source t source E epoch

Figure 6: Results, loss, and accuracy for cGAN model with softmax discriminator

6 Conclusion/Future Work

We found that incorporating the softmax discriminator into our model allowed it to perform noticeably
better, no longer producing a significant number of images which looked almost identical to the style
image. This is because the generator was forced to produce an image which resembled the desired
character more than the original character in order to fool the softmax discriminator. We found,
however, that the generator was still able to fool the discriminator by reshaping the background of the
image to resemble the desired character instead of reshaping the character itself. This led to many
results in which the character and background colors were flipped from the style image to the output.
A more complex discriminator loss function might be useful for determining whether the recognized
character is actually a part of the background shape.

We would have liked to experiment more with the hyperparameters balancing both the various
components of the loss functions and the generator and discriminator learning rates. We found that it
was very difficult to produce a model that consistently maintained similarities with the desired style
images but also consistently changed the style images enough to match the desired characters and
fool the discriminator. With more resources, we could perform a more exhaustive search over the
hyperparameter space to find a combination that balances these objectives.

Another modification we would like to make in the existing model is the evaluation of similarity to the
style image. We currently simply use an L2-norm of the per pixel difference between the style image
and the generated one to evaluate this similarity, but this could be replaced by a more sophisticated
method such as that used in neural style transfer where an image is put through a convolutional neural
network and one of the intermediate hidden layers is used to represent its style. This could help to
make up for the fact that some pairs of letters (such as C and G) are more likely to have similar shapes
than other pairs and that these pairs will be penalized less by the similarity term of the generator loss
as well as the tendency of the generator to produce the new character in the background color instead
of the color of the style image’s character (as can be seen by the "3" in Figure 7).

Given more time, we would have liked to build upon this model further by training it to replace entire
words instead of just a single character at a time. This would require a more complex architecture, as
we would likely need to incorporate an RNN into the embedding-generating process to account for
words of varying lengths. Instead, we had the model output a single image for each character and
then stitch these images together, as seen in Figure 7.

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 7: The desired style image (left) and the GAN output for the input string "CS230" (right)

7 Contributions

Andrew contributed to the literature review, AWS setup, image processing code, model evaluation,
and producing the final report.

Chris contributed to writing the code for the model architectures, creating the loss functions, collecting
data for the input data pipeline, training the models, evaluating inference and testing hyperparameters.

Joe contributed to literature review, model evaluation, performance evaluation, and producing the
final report and poster.

8 Code

Our code can be found at the following link: https://github.com/gaborchris/DeepReplace

It was implemented in Python 3.6 using Tensorflow 2 [8] and Keras [9]. It is in part based on Jason
Brownlee’s conditional GAN implementation [[10] and the Tensorflow DCGAN tutorial [11]].

References

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Proceedings

of the 27th International Conference on Neural Information Processing Systems - Volume 2,
June 2014.

[2] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, November 2014.

[3] Gantugs Atarsaikhan, Brian Iwana, Atsushi Narusawa, Keiji Yanai, and Seiichi Uchida. Neu-
ral font style transfer. In /4th IAPR International Conference on Document Analysis and
Recognition (ICDAR), pages 51-56. IEEE, November 2017.

[4] Hideaki Hayashi, Kohtaro Abe, and Seiichi Uchida. Glyphgan: Style-consistent font generation
based on generative adversarial networks, May 2019.

[5] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, and Trevor
Darrell. Multi-content gan for few-shot font style transfer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, June 2018.

[6] Ankan Kumar Bhunia, Ayan Kumar Bhunia, Prithaj Banerjee, Aishik Konwer, Abir Bhowmick,
Partha Pratim Roy, and Umapada Pal. Word level font-to-font image translation using con-
volutional recurrent generative adversarial networks. In International Conference on Pattern
Recognition, January 2018.

[7] T. E. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images. In

Proceedings of the International Conference on Computer Vision Theory and Applications,
February 2009.

[8] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[9] Francois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[10] Jason Brownlee. How to develop a conditional gan (cgan) from scratch. https:
//machinelearningmastery.com/how-to-develop-a-conditional-generative-
adversarial-network-from-scratch/, July 2019.

[11] Google. Deep convolutional generative adversarial network. https://www.tensorflow,
org/tutorials/generative/dcgan|

https://github.com/fchollet/keras
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan

	Introduction
	Related work
	Dataset
	Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Code

