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Abstract

Predictive multi-class models are trained for wafer defect map classification of
9 classes (including ‘none’ meaning no defect). Wafer map dataset (9 classes)
is imbalanced so convolutional autoencoder and map rotating are used for data
augmentation. The test results show that the rotating is the better way of data
augmentation for wafer map data. Especially there are around 5% of noisy ground
truth labeled data so 10K data for each class was generated for training by each
augmentation method. VGG-16, ResNet50 and two types of Simplified VGG-
16(with/without GAP layer) model architectures are trained on NVIDIA RTX
2080(8G) with Keras. For hyperparameter tuning, Grid search is used and the best
parameters are picked for each model. VGG-16 and simplified VGG-16 model(with
GAP) show the best result(f1-score macro average: 0.91, training accuracy: 0.99,
test accuracy: 0.98). However, ‘Scratch’ class’s f1 score is the lowest one among
all classes in all test cases. Class Activation Map(CAM) data shows the reason and
also indicates the similar shape with each classes’ pattern.

1 Introduction

During semiconductor fabrication, integrated circuits (ICs) are made by creating circuit structures
on many layers of a single wafer and interconnecting the structures using wires. To produce a
high-density IC, the wafer surface must be extremely clean, and the circuit layers fabricated on the
previous wafer should be aligned. The high-density structure may collapse if these conditions are not
satisfied [1]. One important method of preventing collapse is to take scanning electron microscope
(SEM) images of the wafer surface after the completion of each circuit layer and inspect whether
there are any particles (e.g., rock and ring shapes), flaws (e.g., spots and scratches), or irregular
connections caused by misaligned electronic circuits stacked on layers. By classifying wafer surface
defects, manufacturers can determine the defect-introducing process steps and whether the wafer
can be repaired and proceed to the next fabrication step[1]. Therefore, defect pattern recognition
(DPR) and automatic pattern classification (ADC) is critical to improve yield and productivity. As the
integrated circuits process becomes more and more complex with the technology scaling, improving
the ability to recognize the defect patterns of the wafer maps is required [2]. Currently analytical
method is mainly used but this is using predetermined pattern so this pattern need to keep updated
after it is detected by human operator and every result should be reviewed by human operator again.
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Figure 1: Wafer Defect map

Failure type frequency
10000
9000
8000
7000
6000

5000
4000
3000
2000
1000
o - | [ | —

Center Donut Edge-Loc Edge-Ring Loc Random scratch Near-full

Figure 2: Failure Type Frequency

2 Related work

Recently there are some researches using machine learning based defects detection and classification
methodologies [4]-[7]. However, Supervised learning based ML method demands a heavy com-
putation burden because defect data are continually accumulated. ADC should use a proper data
augmentation method that creates a realistic and unexpected defective patterns whenever a new class
image is collected. Furthermore, Current defect hitting rate is around 80% so this should be improved
to the level of around 95% for the practical applications [1]. To make this deep learning based
classification model practically get applied to the production, this project will propose the better
data augmentation method and best deep learning architecture which also can answer the following
questions by showing class activation maps[8]. What part of the input is responsible for the output?
And Can we check what the network focuses on given an input image? If class activation maps for
each defect map has the same shape as its defect pattern then, this classification could be considered
reasonable and give confidence.

3 Dataset and Features

Kaggle wafer map dataset[9] is used for learning and testing of the model. There are 811457 images
in the data but only 172950 images with manual label (totally 9 labels: 0:Center, 1:Donut, 2:Edge-
Loc, 3:Edge-Ring, 4:Loc, 5:Random, 6:Near-full, 7:Scratch, 8:none). From 172950 images, label
8 (none pattern, no defect) occupied 85.2%. There are 8 classes in defect maps and ‘none’ pattern
class is no defect map. There are 9 classes in the dataset like the figure 1. However this data is
heavily imbalanced by classes(Figure 2). The pattern (14.8% of labeled defect data) are 1)Center :
4294(2.5%), 2)Donut : 555(0.3%), 3)Edge-Loc : 5189(3.0%), 4)Edge-Ring : 9680(5.6%), 5)Loc :
3593(2.1%), 6)Random : 866(0.5%), 7)Scratch : 1193(0.7%), 8)Near-full : 149(0.1%). The issue on
this dataset is that data is not balanced and there is noisy ground truth labeled data. So minimum
10K data is required for each class for training[10]. Convolutional autoencoder[11][12] and image
rotation are used for data augmentation and the result will be compared to determine which is better
way for the wafer map dataset. Training and Test data split is done by 80% : 20% ratio. Training is
done using the two types of augmented dataset(10K per class) and Test is done using the originally
distributed 20% imbalanced dataset for all test cases.
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Figure 3: Simplified VGG-16 models (with/without Gloabl Average Pooling layer)

Initializer Xavier_normal | Xavier_uniform | he_normal he_uniform
F1 macro avg. | 0.82 0.83 0.84

Table 1: Test Result for Initializer(optimizer: Adam)

4 Methods

The following four deep learning models are used for wafer map classification. 1)VGG-16, 2)ResNet-
50, 3) Simplified VGG-16(SV) : initial 2 Conv. module and the final FC module, 4) Simplified
VGG-16 using Global Average Pooling layer after the last Conv. layer (GAP-SV). The last two
customized models are shown in Figure 3. Hyperparameter tuning is conducted by using grid
search and the best parameters are picked for the two customized models(SV and GAP-SV). Xavier
uniform is picked for initializer as shown in table 1 and learning rate(Lr), Regularizer L2 and dropout
parameter are picked as shown in the Figure 4(learning rate: 0.001, dropout: 0.4, L2: 0.001). The
value is F1 score macro average for all test results. Training accuracy is 0.99 and test accuracy is 0.97
for all cases.

S Experiments/Results/Discussion

For training the four models, two types of training dataset are generated by two data augmentation
method and after training is done by each data, test is conducted using the 20% original dataset for
all cases. So Precision, Recall and F1 Score are reviewed for all test case, four models and two type
of training dataset so totally 8 cases as shown in Figure 5. F1 Score macro average is used for final
metric. And Training accuracy is same for all, 0.99. The detail results are shown in the figure 5. As
shown in the result, the best F1 score is 0.91 when VGG16 and GAP-SV are used and two model
have been trained using the rotating dataset. In the case of training is done by using the rotating
dataset is showing the better F1 score than Autoencore’s data. Precision, Recall and F1 Score for the
best VGG 16 model using rotating dataset is depicted in Figure 6. Furthermore, Scratch and Loc looks
hard to predict as shown in Figure 5 and 6. Especially, Scratch’s F1 score is lower than other class’s
for all cases. The CAM image in the Figure 7 shows clues for this[13][14], Scratch looks similar
with ‘Near-full’ and ‘none’ and Loc looks similar with ‘Edge-Ring’. The other CAM images looks
similar with each classes defective map pattern and this means that the other classes classification
works well and validated enough.

F1 score(macro avg.)
Dropout L2(N) Lr=0.001 | Lr=0.002
0.001 0.86 | 0.86
0.2 0.01 0.84 0.77
0.02 0.83 0.74
0.03 0.81 | 0.79
0.001 0.86 | 0.84
03 0.01 0.83 0.84
0.02 0.67 0.82
0.03 0.82 | 0.84
0.001 0.89 | 0.86
0.4 0.01 0.81 0.85
0.02 0.84 0.88
0.03 0.64 0.79

Figure 4: Test Results for Dropout, Regualizer(L2) and Learning_rate (F1 score macro avg.)
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Figure 5: Test Result : F1 Score by four models and two types of augmented dataset

precision recall f1-score‘ # Data

Center 0.99 0.98 0.98 442
Donut 1 1 1 1
Edge-Loc 0.86 0.85 0.86 158
Edge-Ring 1 1 1 6
Loc 0.77 0.78 0.78 109
Near-full 1 1 1 11
Random 1 0.71 0.83 35
Scratch 0.89 0.59 0.71 27
none 0.98 0.99 0.99 2977
macro avg 0.94 0.88 0.91

weighted avg 0.97 0.97 0.97

Figure 6: Precision, Recall and F1 Score for VGG16 model using rotating dataset
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Figure 7: Class Activation Map images for all classes




6 Conclusion/Future Work

For the best deep-learning based classification model for wafer defective pattern recognition, VGG-16
is the best for both augmented dataset. However, Customized GAP-SV model is also showing the
same best result in the case of using rotating dataset and there is one more benefit, the training
time is half of VGG-16’s. GAP-SV model also could be the useful classification model when this
is applied to the production. For the training data augmentation method, Rotating is better than
convolutional autoencoder for wafer map data for all test cases. It looks like rotating is generating
more realistic, unexpected and regularized dataset. For future works, Improving ‘Scratch’ and ‘Loc’
pattern’s prediction is required by generating an independent classification module for each class or
by testing different network like Dense. To apply this to the production, a process flow and a certain
model architecture for each process need to be defined more practically.
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