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Abstract

In important prediction scenarios, data-sets are natu-
rally imbalanced, for instance in cancer detection: a small
minority of people may exhibit the disease. This poses a
significant classification challenge to machine learning al-
gorithms. Data imbalance can cause lower performance
for the class of interest, e.g. classifying with high precision
that the person has cancer. When training data is abun-
dant, a possible approach is to down-sample the majority
class, thus restoring balance. Another prevalent approach
is weighting, accelerating learning for minority class train-
ing examples[7]. Synthesis is a major alternative, produc-
ing examples of the minority class, adding them to the train-
ing set to overcome the class imbalance. The Synthetic Mi-
nority Over-sampling Technique, SMOTE[3] is widely ap-
plied, but it was not developed for image data. Rather,
this research applies Generative Adversarial Networks[4],
which generate image examples drawn from the minority
class distribution. The novel SMate approach leverages
GAN minority-class image generators, which benefit from
Transfer Learning from majority-class image generators.
Consequently, SMate outperforms SMOTE for imbalanced
image data-sets.

Index Terms – Data-set Class Imbalance, Image Clas-
sification, Down-sampling, Example Weighting, Synthetic
Minority Over-sampling, SMOTE, Adaptive Synthesis,
ADASYN, Generative Adversarial Network, GAN, Trans-
fer Learning, Deep Neural Network, DNN, Convolutional
Neural Network, CNN

1. Introduction
The goal of this paper is to solve minority-class classi-

fication for imbalanced data-sets. The main contribution is
an algorithm that outperforms SMOTE and ADASYN for
image synthesis. We propose the use of Generative Adver-
sarial Networks and Transfer Learning.

Section 3 introduces the CIFAR data-set. In Section 4,
we provide a brief introduction to training neural networks.

Experimental results are showcased in 5. Final conclusions
are in Section 6

2. Related Work
Our work is inspired by Generative Adaptive Networks,

Transfer Learning, and Classifier Boosting.
Data Synthesis: the Synthetic Minority Over-sampling

Technique[3], SMOTE, synthesizes new examples of the
minority class. For each member of the minority class,
SMOTE finds its k nearest neighbors, and then randomly
chooses a point on the line that connecting them. The point
is used as a new synthetic training example. In many do-
mains, this approach creates realistic examples. However,
such linear combinations are unlikely to produce realistic
images.

Adaptive Synthetic Sampling[5], ADASYN, creates mi-
nority examples in the more challenging regions of the
dataset. It finds the minority training examples crowded by
other classes, Euclidean distance wise. For them, ADASYN
determines that more examples of the minority class should
be created. However, Euclidean distance is not a good
method to measure image proximity.

Classifier Boosting: SMOTEBoost[2]: was proposed
for moderately imbalanced datasets, where the F-score on
the minority class is the primary performance criterium.
However, F-score for minority classes is not always the per-
formance goal. In some cases, false negatives are of greater
concern, as in cancer detection. In some others, false posi-
tives are paramount, as in advertising they result in greater
expense.

3. Data and Software Libraries
3.1. CIFAR10

The entire CIFAR10 data-set is utilized. It spans 10
classes each with 5,000 training examples and 1,000 test
examples. Example are shown in Figure 1.

Each image in the data-set is normalized, so that net-
works do not learn features specific to intrinsic qualities of
an image, for example dead pixels or ambient lighting.



Figure 1. Sample CIFAR10 Class Images

3.2. Third Party Software

All code is implemented in Python leveraging open
source packages: Keras, Tensorflow, SciPy, NumPy.

Amazon Web Service’s SageMaker served as Integrated
Development Environment, working across instances via
their Elastic File System. The instance type used is
conda tensorflow p36. For compute throughput, compute
instances in the p2 GPU family are applied.

Visualizations of neural networks performance are im-
plemented using wandb.com, matplotlib, and pydot. The
first required the installation of graphql-core.

Data augmentation is performed with the imgaug library.

4. Technical Methods and Approach

4.1. Gradient Descent

Gradient Descent is applied to numerically minimize a
loss function, the objective to best fit a neural network’s
parameters to a given data-set. See equation 1, where
Wcurrent is the current network weight matrix, and the gra-
dient F is followed each iteration with lr learning rate.

Wnew = Wcurrent − lr ∇F (Wcurrent) (1)

4.2. Image Classification

The outputs of a neural network can be trained to non-
linearly compute regression values.

Figure 2. Neural Network Classifier Diagram[10]

For classification, the output layer of the neural network
is fed into classification stage. For example, Softmax out-
puts a one-hot encoded vector indicating the predicted class.

softmax(x)i =
exp(xi)∑
j exp(xj))

(2)

4.3. Classifier Ensembles

Ensemble methods include Bagging and Boosting.
Adaptive Boosting[8], AdaBoost, iteratively builds an set
of classification models by adjusting the weights of mis-
classified data during each iteration. Initially every exam-
ple has equal weight. For each subsequent model, weights
are recalculated such that a higher emphasis is assigned to
samples mis-classified thus far. This weight determines the
emphasis in the loss function that is placed on the example
in the training of the next weak learner.

Figure 3. Ensemble Boosting Method[?]

AdaBoost was developed for binary classification prob-
lems with one-split decision trees, weak learner form of de-
cision tree. Likewise, SAMME[11] generalizes boosting for
multi-class classification.

Since we were unable to find an open source implemen-
tation for neural networks, we implemented it for multi-
class image classification CNNs.

4.4. Generative Adversarial Network

Generative Adaptive Networks[4], GANs for short, esti-
mate generative models following an adversarial process. A
network D is trained to classify if an example is truly from
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a chosen distribution, or fake. And a network G is trained
to synthesize examples to fool D. However, in training G
for a minority class, the network can over-fit to few of the
known true examples. It can also produce examples that do
not appear natural to a human.

Figure 4. Generative Adversarial Network Diagram [6]

4.5. Transfer Learning

Transfer Learning [9] is the process of applying knowl-
edge from previously-learned tasks to learn new related
models. Specifically, given a network architecture, and its
associated learned parameters, part or all of it can be used
as input features into another model.

5. Results and Analysis
The idea is to rely on Generative Adversarial Networks

to generate examples of a minority class, to balance an oth-
erwise imbalanced data-set. Performance is validated by
the accuracy of a Classifier that relies on those generated

examples.

5.1. Problem: Imbalanced Data-set Performance

When a classifier architected to perform well on CI-
FAR10 images is trained with the entire data-set, its test
set performance matches its training set performance.

To evaluate the performance of our overall method, we
induce a data-set imbalance, down-sampling one of the
classes to 10%. As can be seen in Figure 5 this severely
impacts the classifier’s test set performance.

Figure 5. Accuracy per Training Epoch

5.2. Baseline: Prior Art Re-balancing Performance

Giving more weight to minority class examples proved to
be the best prior art method, as can be seen for the chosen
Truck class in Figure 6.

Figure 6. Accuracy per Training Epoch

When a classifier is trained and tested with SMOTE, the
minority class is re-balanced with SMOTE-generated exam-
ples. In the case of ADASYN, the algorithm identifies the
hardest examples to classify, and generates new ones with
SMOTE.

5.3. Novel SMate Approach

5.3.1 Data Pre-processing

The CIFAR10 training set has 50,000 examples, each im-
age 32x32 pixels in 3 RGB channels. That is 5,000 exam-
ples for each of its ten classes. And after inducing class
imbalance, sampling the Truck class down to 10% of its ex-
amples, this minority class had only 500 examples.
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With so few minority examples to train a GAN on, we
noticed the generated images over-fitted. Error analysis re-
vealed, for instance, that a big red-colored blob could pass
for a fire department trucks.

Thus we pursued Transfer Learning. We first trained the
Generator on all the majority classes. Then froze 6 layers of
the G sequence, leaving two convolutional layers unfrozen,
proceeding to train for the minority class.

Various image augmentation approaches were tried for
the minority class, Truck, resulting in the images in Fig-
ure 7. Random augmentation includes: Flip, Crop, Gaus-
sianBlur, ContrastNormalization, AdditiveGaussianNoise,
Multiply, Afine. Heavier augmentations were abandoned
as they frequently broke images.

Transfer learning worked well to a point. When we aug-
mented the 500 Truck examples to 5,000 the GAN was able
to converge. However, when the minority class was aug-
mented to 50,000 examples the Generator was not powerful
enough to converge within the allotted time.

Figure 7. Image Augmentation of Truck Class with imgaug

5.3.2 GAN Training

We selected the Brownlee GAN architecture[1], we
found it best suited to generate CIFAR10 images. Figure 8
shows the the G-sequence of the Generator’s Convolutional
Neural Network.

The code published with this research makes architecture
replacement simple plug-and-play. For loss function, differ-
ent functions are readily available: GAN, WGAN, LSGAN,
DRAGAN, HINGE. We chose GAN understanding it suffi-
cient to rebalance CIFAR10 data-sets.

In addition to architecture, we searched for hyper-
parameters including optimizer, experimenting with the
Adam and RMSProp optimizers, because of their
momentum-driven fast convergence properties.

Figure 8. Brownlee CIFAR10 Generator

5.3.3 GAN Evaluation

Quantitative: We experimented with objective early
GAN training termination criteria, but found none that min-
imized compute time while producing natural images.

Thus from a quantitative point of view, we primarily
sought quick convergence to achieving the goal of gener-
ating images that fool the Discriminator. This can be con-
firmed by observing the Discriminator’s fake catch accuracy
fall to 50%. We found that images kept appearing more nat-
ural to a human well past that goal was met.

Figure 9. Generator and Discriminator Training Convergence

For Gradient Descent loss minimization we selected the
Adaptive Momentum optimizer, aka Adam. The largest
learning rate that did not suffer loss divergence was 0.0002.

With respect to the minority class, relying on the GAN’s
Generator to create images, the CIFAR data-set is re-
balanced. Accuracy for our SMate approach is shown in
Figure 10.
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Please contrast to the classification accuracy on the im-
balanced data-set of Figure 5. In fact, SMate performs
better than every other approach: under-samplign, over-
sampling, SMOTE, and ADASYN. The resulting confusion
matrix is in 11.

Error analysis on the confusion matrix reveals that pri-
marily the generated Truck images are sometimes confused
for Car images. This points us to productive future research
directions on loss functions for SMate, further discussed in
Section 6.

Figure 10. Truck Classification Accuracy for Truck Class after Re-
balancing Data-set with SMate

Figure 11. Truck Classification Confusion Matrix after Re-
balancing Data-set with SMate

Qualitative: To assess convergence, a researcher sub-
jectively evaluated image quality.

Given the adversarial training approach, the generator
learns after every batch. Thus while image quality may gen-
erally increase, we saw it occasionally suffering setbacks.
Figure 12 shows example generated images, which require
some squinting and imagination to see them as Truck im-
ages.

Figure 12. Generated Truck Images

5.3.4 SAMME Classifier Performance

We attempted to address minority class imbalance by
also innovating in classifiers. However, our SAMME imple-
mentation of multi-class Ada-boost did not succeed. Nor-
malization did not perform as expected, perhaps causing ag-
gregations to be significantly biased from maximum likeli-
hood.

6. Conclusion and Future Work
We propose the SMate method, which can be used to re-

balance imbalanced data-sets. It relies on Transfer Learn-
ing a GAN generator trained for majority classes, leverag-
ing it to learn to generate minority examples. It outper-
forms prior art methods including: under-sampling, over-
sampling, SMOTE, and ADASYN.

As future direction, we believe that the GAN’s loss func-
tion should be enhanced. Not only should it target generat-
ing examples of the minority class. It should also penalize
generation of examples that get classified as majority ob-
jects.

In principle, this work is extensible to every data type.
For example, investigation into SMate for time series data
appears to hold high promise.

The project’s repository is at https://github.com/pablo-
tech/SMate–SyntheticMinirityAdversarialTechnique
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Both authors contributed to the overall direction, devel-

opment, analysis, and conclusions.
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Generative Adversarial Networks.
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Boosting.
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