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1 Introduction

Summarization aims to distill essential information from the source text and has been widely applied
to headline generation, lawsuit abstraction, biomedical and clinical text summarization. There are
two main approaches for summarization: extractive summarization and abstractive summarization.
While extractive summarization directly copies words and sentences from the source text, abstractive
summarization can paraphrase the source text, leading to more flexible and compressed summaries.

Most works about abstractive summarization aim to improve the ROUGE score (Lin, 2004) —
a commonly-used metric for measuring the n-gram overlap between generated summaries and
reference summaries. However, evaluating summarization by only measuring n-gram similarity is not
perfect and convincing. An important but missing aspect for evaluating abstractive summarization is
factual correctness. According to Kryściński et al. (2019a), around 30% of summaries generated by
abstractive models contain factual inconsistencies. This is a critical issue for further applications of
abstractive summarization. Table 1 shows an example of factual incorrectness.

In this work, we propose factual score — a new evaluation metric to evaluate the factual correctness
for abstractive summarization. We first generate summaries using four state-of-the-art summarization
models (Seq2seq (Bahdanau et al., 2015), Pointer-Generator (See et al., 2017), ML (Paulus et al.,
2018), ML+RL (Paulus et al., 2018)) on widely-used CNN/DM dataset (Hermann et al., 2015). Then,
we adopt open information extraction (OpenIE) methods to extract facts from generated summaries
and reference summaries. Finally, we use sentence encoder to generate fact embeddings and compute
factual score by averaging cosine-similarity of each fact pair.

We further explore the sensitivity of the factual score to factual inconsistencies by manually generating
false examples with five semantically variant transformations. Our results demonstrate that the factual
score has the highest sensitivity to factual inconsistencies compared with other evaluation metrics
like ROUGE score and BERT score (Zhang et al., 2019). Experiments also show that the factual
score is highly correlated with ROUGE score and BERT score. Even though our experiments are
far from exhaustive, we hope our work could shed light on the evaluations of factual correctness for
abstractive summarization.

Source Text ... jacob mincer , a pioneer in labor economics who was the first to quantify the payoff from education and
training , died sunday at his home in manhattan . he was 84 . the cause was complications of parkinson ’s disease
...

Reference Summary jacob mincer , pioneer in labor economics , dies at age 84 .
Reference Facts (jacob mincer; dies; at age 84)
Generated Summary jacob mincer , pioneer in labor economics who was first to quantify payoff from education and training , died

june .
Generated Facts (labor economics; [to] quantify; payoff from education and training)

(jacob mincer; died; june)

Table 1: Example of factual incorrectness from generated summary. Word colored in red is false.
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2 Method

2.1 Summary Generation

Given a long sequence of tokens x = (x1, x2, ..., xm), we want to generate a short sequence of
tokens y = (y1, y2, ..., yn), which condenses the information from source text (usually n� m). In
this work, we use 4 strongly-performed abstractive summarization models to generate summaries.

Seq2seq Sequence to sequence (seq2seq) model with attention (Bahdanau et al., 2015) consists of
an encoder and a decoder, which are usually implemented using variants of RNNs (LSTM, GRU).
The encoder generates a contextualized representation hm for the source sequence, which is used
to initialize the decoder state s0. At decoding step t, we compute the context vector ct based on
attention at. This context vector is then combined with decoder state st to generate the probability
distribution of next token over vocabulary ŷt. We optimize negative log-likelihood loss Lnll during
training. 1

ht = RNN(ht−1, xt)
st = RNN(st−1, yt)

ait =
exp(st · hi)∑
j exp(st · hj)

ct =
∑
i

aithi

ŷt = MLP([st; ct])

Lnll = −
n∑

t=1

log ŷt

Pointer-Generator In order to increase the token correctness and solve the out-of-vocabulary
problem, See et al. (2017) enables the model to directly copy tokens from the source text. Based on
seq2seq with attention, they introduce a gate pgen between 0 and 1 to control the model between gen-
erating tokens and copying tokens. The updated probability distribution ŷ′t combines the generating
probability and copying probability (estimated by attention). Also, we add an auxiliary coverage loss
Lcov to alleviate the repetitive n-gram generated by neural models.

pgen = σ(MLP([st; ct]))
ŷ′t = pgenŷt + (1− pgen)at

Lcov = −n+

m∑
i=1

max(1,

n∑
j=1

aij)

ML To attend over the input and generated output separately, Paulus et al. (2018) adapt the seq2seq
with attention framework and use attention mechanism both in the encoder (ct) and decoder (c(d)t ),
recording which words have been attended in the source text and which words have been generated
by the decoder.

a
i(d)
t =

exp(st · si)∑
j exp(st · sj)

c
(d)
t =

∑
i

a
i(d)
t si

ML+RL Modeling NLL loss Lnll assumes that reference summary is given during the training
phase, which is unknown in the inference stage, leading to the issue of so-called "exposure bias". At
the basis of ML, Paulus et al. (2018) takes a reinforcement learning approach which tries to minimize
the negative expected reward Lrl.

Lrl = −(r(ys)− r(y))
n∑

t=1

log ŷst

1All these equations have been simplified for understandings.
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Figure 1: The overview of the factual score computation.

2.2 Fact Extractor

Fact extractor extracts a set of facts implied in the given text. We propose to use open information
extraction (OpenIE) methods to extract facts from generated summaries and reference summaries.
OpenIE can be formulated as a sequence labeling task. Given an input sequence w = (w1, ..., wt),
our goal is to generate a list of tuples. Each tuple is in the form of (s1, ..., sm), where each si is
a contiguous subspan of w. One of the si is distinguished as the predicate, while the other spans
are considered its arguments (Stanovsky et al., 2018). Among each tuple, we only extract triple
(argument0, predicate, argument1) as the fact and ignore other spans. We generate a set of facts
G = {G1, ..., Gm} for each generated summary andR = {R1, ..., Rn} for each reference summary.

2.3 Fact Encoder

Fact encoder embeds each fact to a continuous real space. We simply concatenate the fact triples
and use sentence encoder to generate the corresponding fact embeddings. For each fact Gi ∈ G,
we feed Ĝi = argument0 ◦ predicate ◦ argument1 into the sentence encoder f . Here, ◦ denotes the
string concatenation operation, and the sentence encoder f maps the concatenated fact to its vector
representation ~Gi = f(Ĝi). The same process applies to each Ri ∈ R.

2.4 Factual Scorer

Given each pair of generated and reference summary and their fact embeddings, we use cosine-
similarity to estimate their relevance, and evaluate the precision, recall, and F1 by averaging across
facts from generated summary and facts from reference summary. For each pair of fact embeddings
~Gi and R̂j , the similarity is computed as sij =

~Gi·~Rj

‖~Gi‖‖~Rj‖
. The factual precision FACT-P =∑m

i=1 maxn
j=1 sij

m , the factual recall FACT-R =
∑n

j=1 maxm
i=1 sij

n , and the FACT-F1 = 2FACT-P ·FACT-R
FACT-P+FACT-R .

3 Experiments

3.1 Dataset

CNN/DM is the most commonly-used corpora for neural abstractive summarization. We preprocess
the dataset followed by Paulus et al. (2018). Data statistics are listed in Table 2.

Data Split Source Reference
Train Dev Test #Tokens #Tokens #Facts
287K 13K 11K 384.0 61.3 9.7

Table 2: CNN/DM dataset statistics. Average number of tokens and extracted facts are reported.
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Figure 2: Falsity attack. X-axis: Text transformation probability. Y-axis: Scores.

3.2 Experimental Setup

For abstractive summarization, we implement Seq2seq and Pointer-Generator models. We use 1-layer
BiLSTM (512 hidden size) as encoder and 1-layer LSTM as decoder (512 hidden size). We train
the model for 10 epochs with 32 batch size. We use Adagrad with 0.15 initial learning rate. We
select the best model based on the perplexity achieved on the dev set. We generate summaries using
beam search with 10 beam size. We limit the minimum generation length as 35. We block repeated
3-gram. Our implementation could achieve 28.52 and 35.37 ROUGE-L score on CNN/DM for
Seq2seq and Pointer-Generator, respectively. In the final experiments, we directly use around 500
sampled generated summaries from the four systems (Chaganty et al., 2018).
For factual score computation, we use the default settings of AllenNLP OpenIE system (Gardner
et al., 2017) to extract facts from reference summaries and generated summaries, and we use Google
universal sentence encoder (Cer et al., 2018) to generate fact embeddings.

3.3 Result

We evaluate each model by ROUGE-L score (Lin, 2004), BERT score (Zhang et al., 2019) and
our proposed factual score (Table 3.3). ROUGE-L score evaluates the n-gram hard-match between
generated summaries and reference summaries, while BERT score measures word soft-match using
contextualized word embeddings provided by BERT. Factual score evaluates the factual consistencies
between generated and reference summaries. Factual score, as well as ROUGE score, ranks ML+RL
> Pointer-Generator > ML > Seq2seq, which is consistent with the human evaluation result.

System ROUGE Score BERT Score FACT Score
Mean Std Mean Std Mean Std

Seq2seq 19.94 10.89 55.01 6.97 39.61 12.45
Pointer-Generator 27.62 13.68 60.20 7.70 43.49 12.11
ML 26.57 11.67 60.35 6.19 42.83 10.33
ML+RL 28.63 12.16 61.72 6.40 45.13 9.89

Table 3: Evaluations of generated summaries from different models.

4 Analysis

4.1 Falsity Attack

To investigate the sensitivity of the factual score to factual inconsistencies, we define 5 types of
common falsities (Kryściński et al., 2019b) that would occur in summarization and generate false
examples from reference summaries with these semantically variant transformations (Table 4).
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Pronoun Swap We define 4 groups of pronouns: subject personal pronouns (e.g., he), object personal pronouns (e.g., him),
reflexive pronouns (e.g., himself ), and possessive pronouns (e.g., his). For each pronoun in the reference
summary, we replace it under a predefined probability with another pronoun randomly sampled from the
same group.

Number Swap For each number entity in the reference summary, we replace it under a predefined probability with another
number entity randomly sampled from the source text. Number entities are detected with NER tools.

Entity Swap Same as number swap. Replace named entity with another named entity randomly sampled from the source
text.

Negation We define a set of auxiliary verbs with its negations (e.g., do, don’t/do not). For each auxiliary verb in the
reference summary, we randomly flip it with a predefined probability.

Noise Injection For each token in the reference summary, we randomly duplicate or delete it with a predefined probability.

Table 4: Five types of semantically variant transformations for false example generation.

Figure 3: Correlations between factual score and ROUGE score (left) & BERT score (right).

With the predefined probability ranging from 0.1 to 0.9, we evaluate the factual score, as well as
ROUGE score and BERT score, using these generated false examples. From Figure 2, we find the
factual score has the most sensitivity to falsities compared with ROUGE score and BERT score
(except for number swap). This demonstrates that the factual score better captures semantic variances.
It is also worth noting that all the evaluation metrics are much more sensitive to noun phrases
transformation (i.e. noise injection, entity swap) than numbers, pronouns and negation transformation.
This is the inherent flaw of neural-based evaluation metrics, as those tokens are mapped to locations
close together in the embedding space. For example, in number swap, most numbers are treated as
special “unknown (UNK)" token in neural models.

4.2 Metric Correlation

To get better tuitions on how the factual score correlates with other evaluation metrics, we investigate
the correlation of factual score with ROUGE score and BERT score, respectively (Figure 3).
We find the factual score has strong correlations with both ROUGE score and BERT score, and its
correlation with BERT score is stronger than that with ROUGE score. As BERT score is demonstrated
to correlate with human evaluation better than ROUGE score (Zhang et al., 2019), it indicates that
our factual score may also be more consistent with human evaluation.

5 Discussion and Future Work

From the falsity attack experiment, we conclude that the factual score lacks sensitivity to number
swapping, pronoun swapping and negation. In contrast, the encoder is much more sensitive to noun
phrases than numbers, pronouns, and negations, which inspires us to design better fact encoder
architecture. We also experimented with InferSent (Conneau et al., 2017) as the fact encoder, and it is
much less sensitive to each of the transformation than Google universal sentence encoder.
OpenIE models extract facts via sequence tagging, and its output contains duplicated and noisy facts.
Future efforts may be devoted to denoising and coreference resolution for OpenIE extractions.
On the other side, the factual score may serve as a novel reward function that could be optimized
using reinforcement learning approaches. Future experiments may help to investigate its effectiveness
on improving factual correctness in abstractive summarization tasks.
We hope this work would shed light on evaluation metrics of factual correctness for abstractive
summarization.
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Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher. 2019b. Evaluating the
factual consistency of abstractive text summarization. arXiv preprint arXiv:1910.12840.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81.

Romain Paulus, Caiming Xiong, and Richard Socher. 2018. A deep reinforced model for abstrac-
tive summarization. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083.

Gabriel Stanovsky, Julian Michael, Luke S. Zettlemoyer, and Ido Dagan. 2018. Supervised open
information extraction. In NAACL-HLT.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675.

6

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/D17-1070
https://www.aclweb.org/anthology/D17-1070
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-

	Introduction
	Method
	Summary Generation
	Fact Extractor
	Fact Encoder
	Factual Scorer

	Experiments
	Dataset
	Experimental Setup
	Result

	Analysis
	Falsity Attack
	Metric Correlation

	Discussion and Future Work

