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Abstract 

 
Respiratory diseases are a leading cause of death in the 

world and accurate lung auscultation is extremely 
important for the diagnosis and evaluation of disease. 
However, this method is vulnerable to physician and 
instrument limitations and there is strong interest in 
automation of lung sound analysis. In this paper, I explore 
the use of previously described CNNs to classify two 
adventitious respiratory sounds – wheezes and crackles – 
using a publicly available respiratory sounds database that 
has previously been used for non-machine learning 
techniques. My results demonstrate that CNNs can achieve 
much higher accuracy with fewer pre-processing steps and 
that CNNs are most effective when trained separately for 
different sounds.  
 

1. Introduction 
The lungs are one of the most vital organs in our body, 

yet one that we often take for granted. Respiratory diseases 
such as chronic obstructive pulmonary disease (COPD), 
asthma, acute lower respiratory tract infections, 
tuberculosis, and lung cancer are amongst the leading 
causes of death and disability worldwide [1]. Lung 
auscultation is a cheap, non-invasive, safe, and easy to 
perform diagnostic technique that is still a critical part of 
the physical exam today. However, it is still extremely 
vulnerable to false interpretations based on physician and 
instrument limitations [2]. There is significant clinical 
interest in computerized analysis of respiratory sounds but 
the use of machine learning algorithms in this field is still 
preliminary [3, 4, 5, 6].  

 
Lung sounds being non-stationary and non-linear signals 

makes them difficult to analyze and distinguish and use of 
electronic stethoscope has made automated analyses 
possible. Past research have found CNNs to be an effective 
means of classifying abnormal breath sounds and [7].  

  
Recently, the largest publicly available respiratory sound 

database was compiled to encourage the development of 

algorithms that can identify common adventitious breath 
sounds (wheezes and crackles) from clinical and non-
clinical settings [8]. Crackles are discontinuous sounds, 
typically less than 20 ms, associated with lung fibrosis (fine 
crackles) or chronic airway obstruction (coarse crackles) 
[9,10]. Wheezes are high pitched sounds that usually last 
more than 100 ms that indicate obstructive airway 
conditions such as asthma and COPD [9, 10]. A total of 
6898 respiratory cycles (a single inhalation and exhalation) 
were recorded and annotated by experts as wheezes, 
crackles, both, or no adventitious sounds (i.e. normal). Out 
of a total of 11 entries, the highest accuracy achieved was 
50% using a Support Vector Machine (SVM) multi-class 
classifier [11] and there are currently no publications that 
use machine learning for this dataset. The goal of this 
project is to improve the accuracy of classification using 
convolutional neural networks (CNNs).   

 

2. Related work 
Recently, research on the use of CNNs in lung sound 

analysis has begun to be published [4, 5, 6, 12]. In 2017, 
one paper concluded that “ spectrogram image 
classification with CNN algorithm works as well as the 
SVM algorithm, and given the large amount of data, CNN 
and SVM machine learning algorithms can accurately 
classify and pre-diagnose respiratory audio” [4]. However, 
this paper used the same CNN for 13 different respiratory 
sound types, all of which have different frequency and 
duration profiles. The only other publication of CNN 
classification of lung sounds in 2018 also created a single 
model to classify 7 different sound types [5]. Their 
conclusion was that “CNN outperformed the handcrafted 
feature based classifiers” namely SVM, k-nearest neighbor 
and Gaussian mixture models [5].  

 
I utilize the CNNs proposed in these papers but create 

different models for each sound type.  
 

3. Dataset 
For this project, I use the Respiratory Sound Database 

from the International Conference on Biomedical and 
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Health Informatics 2017 Challenge. This is the first 
publicly available respiratory sounds dataset [10]. It 
contains 920 audio samples collected independently from 
two centers in Portugal and Greece. The files contain a total 
of 5.5 hours of recordings with 6898 respiratory cycles from 
126 subjects. 

The cycles were annotated by respiratory experts as 
including crackles, wheezes, a combination of them, or no 
adventitious respiratory sounds leading to 1864 crackles, 
886 wheezes and 506 with both. The recordings were 
collected using heterogeneous equipment and their duration 
ranged from 10s to 90s. The chest locations from which the 
recordings were acquired is also provided. Noise levels in 
some respiration cycles is high, which simulate real life 
conditions. patients. Each annotation file contains four 
columns: the beginning and end of each respiratory cycle in 
the recording, presence of crackle or not and presence of 
wheeze or not.  

4. Method 
To summarize, most of the effort for this project went 

into pre-processing the audio files and developing the 
model.  

Pre-processing  
• Slice .wav files into individual respiratory cycles 

to correspond to annotations (separate wheeze and 
crackle output set)  

• Resample to 4000 Hz to set up coherent feature set  
• Apply 12th-order Butterworth bandpass filter with 

120, 1800 Hz cut off frequencies to minimize 
noise effects  

• Convert to mel- for input to CNN: created 128x16 
spectrograms where 128 refers to number of mel 
windows and 16 refers to number of frames. I 
chose 128 as this is a standard number and 16 as I 
wanted to start with a small number of frames and 
then tune as a hyperparameter.  

 
Fig 1: Example of mel-spectrogram of spliced audio file 

 
Neural network: I modified an existing CNNs to create 

the base model for my dataset.  

• Spectrogram dimensions 128x16x1 [4] 
• 1st convolutional layer with filter size 3x3 and 32 

feature maps 
• Max pooling 2x2 
• 2nd convolutional layer with filter size 3x3 and 32 

feature maps. o Max pooling 2x2 
• Flatten: Fully connected layer 
• Output: single neuron for presence of specific 

sound (wheeze or crackle) 

 
Fig 2: Picture of original CNN from 2017 paper [4] 

 
For loss function, I used sigmoid cross entropy loss:  

 
Furthermore I used an Adam optimizer with learning rate 
0.009 and batch size of 64. For the first model, I used both 
wheezes and crackles simultaneously for 10 epochs. I then 
split the dataset and ran the model on wheezes and crackles 
separately again for 10 epochs. I used both a 90-10 and 80-
20 train-test split – the results for both were the same and 
therefore only 90-10 results are shown here.  

5. Results and Analysis 
The first model had a train accuracy of 48.69% and a test 

accuracy of 50%. This was already performing at a higher 
level than the SVM initially used on the dataset.  

 
Fig 3: Cost function of model 1 

 
The second model showed a train and test accuracy of 

100%. This was an unexpected result and requires further 
investigation.  
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Fig 4: Cost function of model 2 

 
This result clearly demonstrates that splitting up models 

for each sound type is very beneficial.  

6. Conclusion and Future Work 
This result clearly demonstrates that splitting the sounds 

up into different models is very beneficial. Future work 
includes testing the model with more data which 
presumably would reduce the accuracy from 100%. That 
would also allow hyperparameter tuning such as number of 
frames for the spectrogram. Further, I would consider 
training a deeper network similarly to that described in the 
2018 paper [5]. Lastly, if no other data was available, I 
would consider data augmentation by time warp. This is one 
of four speech data augmentation methods – the only one of 
which seems to be appropriate for my data. However, this 
is reported to be the most computationally expensive and 
least effective method so this would be a last resort if I am 
unable to find more comparable data.  
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