
Multi-modal Model for Sentence Level Captioning

Hikaru Hotta
Department of Computer Science

Stanford University
hhotta@stanford.edu

Tom Pritsky
Department of Biology

Stanford University
tom5@stanford.edu

Abstract

Captioning refers to the transcription of speech into time-coded blocks. Traditional
approaches to captioning have relied on transcribing audio data using End-to-End
Automatic Speech Recognition models (ASR) (DeepSpeech citation). However the
performance of ASR models in real world settings is limited due to factors such
as high noise and speaker distance. Other approaches have relied on transcribing
visual data using lipreading models (LipNet citation). However, the performance
of lipreading models have been variable with limited spatio-temporal robustness.
To build on the existing state of the art, we developed a multi-modal model for
captioning that integrates both auditory and visual cues. Our model splits video
data into visual and audio data and makes use of a DeepSpeech ASR Model and
LipNet, an end-to-end sentence-level lipreading model, which are fused together
with fully connected softmax and Connectionist Temporal Classification (CTC)
layers.

1 Introduction

Around 48 million Americans have a hearing loss which adversely impacts speech understanding.
This reduced comprehension is particularly pertinent in academic settings where precise discernment
of speech is critical. Real time captioning is a highly pertinent accommodation; however, accuracy
in real world settings is limited due to factors such as noise and distance to speaker. Inspired by an
approach called lip-reading, a technique commonly used by the hearing impaired to better understand
speech, we developed a multi-modal model for captioning that integrates both auditory and visual
cues for higher captioning accuracy. Our model is particularly useful as a noise reduction technique,
allowing a single speaker to be isolated from a crowd’s background noise.

The input to our model is a video. We use a parser to split our video into audio and visual data (frames
of images). We then feed our audio data through independent layers of our audio modality module
comprised of three 1D Convolutions, three Bi-GRUs, and a dense layer. Simultaneously, visual data
is passed through the independent layers of our visual modality comprised of three STCNNs, each
followed by spatial pooling, two Bi-GRUs and a dense Layer. The dense layers of both modules are
processed by a softmax layer and trained with CTC loss. Our multi-modal model outputs a predicted
text captioning of the input video.

2 Related work

In this section we outline various approaches to ASR, automated lip-reading, and multi-modal neural
networks.

Automatic Speech Recognition: Traditional ASR models have used multiple algorithms and pro-
cessing stages (Hannun et al., 2014). The simplicity of our modules and their integration with each
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other were critical design considerations in developing our multi-modal model. Therefore, we decided
to use a pretrained end-to-end speech recognition model, Deep Speech, which was developed by
Baidu Research (Silicon Valley AI Lab). Combined with an N-gram language model, Deep Speech
achieved a word error rate of 16.0% on the full Switchboard Hub5’00 test set and 19.1% on a noisy
speech recognition data set (Hannun et al., 2014). It achieves this by applying end-to-end deep
learning using RNNs (Hannun et al., 2014). Other ASR models such as Google’s Listen, Attend,
and Spell (LAS) system were also considered for our audio module (Chiu et al. 2018). The model
exhibits superior performance with a word error rate of on a diction task (Chiu et al. 2018). However,
the complexity of the model compared to Deep Speech, which is delineated by its Decoder, Attention,
Encoder module architecture, made Deepspeech a better candidate for our multi-modal system (Chiu
et al. 2018).

Automated Lip-reading: As both a computer vision and NLP task, a variety of models have been
developed for the task of lip-reading. One such approach is a Fully Convolutional (FC) deep neural
network architecture trained on a CTC loss on the Lip Reading in the Wild and Lip Reading Sentences
2 data sets (Afouras et al., 2018). This FC approach achieves a word error rate of 55% and trains faster
than other types of models because it has a smaller number of parameters (Afouras et al., 2018). The
same 2018 paper outlines the use of three stacked Bidirectional LSTM (BLSTM) recurrent networks.
The first BLSTM layer ingests the vision feature vectors and the final outputs the character probability
for each output frame (Afouras et al., 2018). The approach achieves a word error rate of 62.2% which
is significantly higher than the FC approach, despite the fact that the recurrent model has context on
every decoding time-step as compared to the FC model (Afouras et al., 2018). To take advantage of
the fast training and high performance of the FC approach and the context retention characteristic
of the recurrent model, we investigated Lip Net, a lip reading model that is characterized by by its
spatiotemporal convolutional and Bi-GRU layers and CTC loss (Assael et al., 2016). Lip Net is
an open source speech to text model developed at the University of Oxford (Assael et al., 2016).
This approach develops frame-wise labels and then searches for alignment between the frame-wise
predictions and the outputted sequence (Assael et al., 2016). While the GRID corpus data set that
the LipNet model is trained on is limited, with each example following phrases following a strict
syntactical pattern, it achieves a 11.4% word error rate on unseen speaker examples (Assael et al.,
2016). We decided to use this model because of the availability of an open-source model and GitHub
repository with training and testing architecture (Aulia Rahman Maulana, 2018).

Multi-modal Neural Networks: Multi-modal neural networks enable multiple modes of data to be
channeled to train and test Deep Neural Networks. An advantage of such as system is that the variety
of input data better captures spatiotemporal and contextual information to generate more robust
predictions. Of the copious applications of multi-modal neural networks, we studied its application
towards emotion recognition using the fusion of audio, video and text data (Ortega et al., 2019). Each
modality has FC independent layers, a merge layer, a FC layer, a linear regression layer, a decimal
scaling module, and an linear activation output (Ortega et al., 2019). We took inspiration from the
concatenation function utilized in this implementation to merge the outputs of our independent layers.

3 Dataset and Features

We used the GRID corpus dataset to train our model, since this is the dataset that LipNet, our visual
speech to text network, has been trained on. This dataset is comprised of video data with audio
of a subject speaking sentences. The GRID corpus dataset itself is a compilation of high quality
audio-visual recordings. In total, the dataset consists of speech segments of 34 speakers recording
1000 sentences each. The phrases spoken follow a strict syntactical pattern: "command + color +
preposition + letter + digit + adverb" such as “place green at B 4 now”, where individual words are
substituted but the sentence structure remains consistent.

From the GRID corpus dataset, we obtained 1000 examples from randomized speakers which were
split into 800 training, 100 validation and 100 test examples. All downloaded videos were 3 seconds
in length and had a frame rate of 25fps. Our prepossessing pipeline splits the video into video (mpg)
and audio (wav) format. It applies a DLib face detector and the iBug face landmark predictor to the
video (mpg) produce a mouth centered crop of each frame. It also computes the log of the Fourier
Transform of the audio (wav) file and normalizes the feature vector using Z normalization (Assael et
al., 2016).
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Figure 1: One frame of GRID corpus data set mpg file with caption overlay

4 Methods

Our multi-modal model consists of an independent lipreading unit, an independent speech recognition
unit, and a dependent CTC unit that processes the concatenated outputs of the independent units.

Figure 2: Multi-modal Model architecture.

Independent Lipreading Unit

A sequence of t frames is the input to our independent unit, and it is processed by three layers of
Spatiotemporal Convolutional Neural Network (STCNN), each with a spatial max-pooling layer. Our
STCNN from C channels to C ′ channels for input x and weights w ∈ RC′xCxktxkwxkh is able to
process data temporally and spatially (Assael et al., 2016).

[stconv(x,w)]c′tij =

C∑
c=1

kt∑
t′=1

kw∑
i′=1

kh∑
j′=1

wc′ct′i′j′xc,t+t′,i+i′,j+j′ (1)

The extracted features are then processed by two Bi-GRUs where each time-step of the GRU output is
processed a linear layer. GRU’s, or gated recurrent units, allow recurrent networks to retain long term
memory by passing forward essential information from previous layers to later layers via a hidden
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state. Unlike LSTMs, GRUs rely on two gates, an update gate and a reset gate, to determine which
previous information to pass forward and which to forget.

[ut, rt]
T = sigm(Wzzt +Whht−1 + bg) (2)

h̃t = tanh(Uzzt + Uh(rt � ht−1) + bh) (3)

ht = (1− ut)� ht−1 + ut � h̃t (4)

z := {z1, ..., zT } is the input sequence to the RNN. The Bi-GRU ensures that ht depends on zt′ for
all t′ (Assael et al., 2016).

Independent Speech Recognition Unit

Our independent speech recognition unit relies on conversion of the input audio sequence to a
spectrogram. The spectrogram is passed as input to a 1D convolutional layer with 1026 nodes,
followed by three Gated Recurrent Units (GRUs – described above in Independent Lipreading Unit
section) and a fully connected dense layer. Batch normalization is used after each layer to normalize
the outputs, ensuring that no activations are too high or low and allowing use of higher learning rates
without risk of exploding or vanishing gradients.

Dependent CTC Classification Unit

Our dependent CTC (Connectionist Temporal Classification) unit consists of a fully connected layer to
process the concatenated outputs of the previous independent units (lipreading and speech recognition
units), followed by a softmax classification layer. CTC allows us to work with temporal data without
needing to specifically annotate the timestamp of each character in the input, a time-consuming
process. Both LipNet and DeepSpeech (the original networks upon which we based our approach)
rely on CTC to effectively work with temporal speech and video data. This motivated us to use CTC
in tandem with our final classification layers rather than simply implementing softmax or logistic
regression.

The output neurons of the CTC delineate the distribution over whole character sequences c ∈
{A,B,C, ..., blank, space} where x is the time-step encoded feature vector from the GRU.

P (c|x) =
N∏
i=1

P (ci|x) (5)

From the distribution, interpret the mapping over possible transcriptions y using where β(c) is a
mapping over y.

P (y|x) =
∑

c:β(c)=y

P (c|x) (6)

Network parameters θ are updated to maximize the probability of y∗, the correct label (Coates, 2016).

θ∗ = argmax
θ

∑
c:β(c)=y∗(i)

P (c|x(i)) (7)

5 Experiments/Results/Discussion

We conducted an ablation study in order to test whether our multi-modal model improved upon our
individual speech recognition and Lipnet model on the GRID corpus.
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Our evaluation metrics were Word Error Rate (WER) and Character Error Rate (CER) since they
robust metrics that encompass word and character level accuracy.

WER =
Sw +Dw + Iw

Nw
(8)

where Sw is the number of word substitutions, Dw is the number of word deletions, Iw is the number
of word insertions, Nw is the number of words in the ground truth.

CER =
Sc +Dc + Ic

Nc
(9)

where Sc is the number of character substitutions, Dc is the number of character deletions, Ic is the
number of character insertions, Nc is the number of character in the ground truth.

Evaluation
Model WER CER
DeepSpeech 1.143 0.842
LipNet 0.114 0.064
Multi-modal ? ?

While DeepSpeech is a robust model that conducts end-to-end speech recognition, it performed
poorly on a sentence level because it was not trained on the GRID corpus data set and therefore was
unable to make good predictions on sentences with strict syntactical rules. It performed slightly better
on a character level as the model was able to recognize phonemes and decode some of them.

LipNet performance metrics were obtained from the Lipnet paper in its tests on Unseen Speakers.
Our reported LipNet WER metrics are based upon published results, representative of a large training
set of 17111 utterances of 261 speakers for training (about 34.9 hours).

6 Conclusion/Future Work

We conclude that, in theory, concatenation of the outputs of a visual and an auditory network should
indeed improve the accuracy of end to end speech transcription. This conclusion is based upon
previous work by Google Deepmind, which relies on a multi-modal deep learning audio-visual audio
visual network to transcribe speech (Ephrat et al., 2018). Although the approach wasn’t end to end, it
achieved significantly improved Signal to Distortion ratio. Although SDR is not directly comparable
to WER, both refer to accuracy in some context (one in a single speaker context and the other in a
high background noise context). As a result, we believe that our multi-modal model would achieve
higher accuracy (lower WER) relative to the baseline purely speech based transcription in high noise
settings. This is evident in contexts with multiple speakers. This matches our original hypothesis
that lipreading provides context and is a valuable form of noise reduction. However, since the GRID
Corpus dataset we use for training consists of only clean speech from a single speaker, we could not
test this hypothesis directly.

In the future, we hope to train the final classification layers for our model, to allow us to validate our
prediction that the multimodal model will produce improved WER results relative to baseline purely
audio or purely visual networks, based on previous experimentation in a non end to end trained model
(which attained an improvement in the absolute speech recognition rate up to 3.10% for multi-modal
relative to purely audio based approaches (Ivanko et. al. 2018). Our work seeks to demonstrate this
effect in a fully end to end trained audio-visual model.

Furthermore, we hope to train more noise-robust ASR systems through a multi-modal approach.
Our hypothesis is based on use of lipreading by hearing impaired persons as a means of increasing
understanding in high noise and is supported by previous work (Ivanko et. al. 2018).
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7 Contributions

Hikaru - He took a lead on developing a pipeline that splits video data into mpg wav formats and
pipes it to our independent modules. He also set up the speech recognition independent module
(*by solving dependency issues) and not only evaluated it on the GRID corpus but also developed
the pipeline to retrieve intermediate outputs (Linear) of the model to train our multi-modal network.
He conceptualized and formalized the multi-modal model architecture and developed the training
pipeline for the model and was responsible for the completion of the final write-up.

Tom - Tom took the lead on extracting intermediate outputs from the LipNet Grid Corpus files as
well as local setup of the Lipnet architecture. He applied the pipeline to convert LipNet .mpg files to
.wav files developped by Hikaru and modified it to work with the Grid Corpus dataset. He produced
a document that correlated training files to labels that allowed testing of the DeepSpeech network on
the Grid Corpus dataset to establish baseline speech transcription accuracy. Tom took the lead on the
poster and assisted with the writeup.
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