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ABSTRACT
We explored 3 different model-free deep reinforcement learning algorithms, Monte Carlo Learning, SARSA,

and Deep Q-Learning, to build an AI for the boardgame Dominion. 7 different hyperparameters are studied,
corresponding to neural network structure, regularization, reinforcement learning exploration, and reinforce-
ment learning reward design. With the Monte Carlo Learning algorithm and the right hyperparameters, we
were able to achieve >85% win rate against a heuristic-based AI close to the level of human experts.

1. INTRODUCTION

Dominion(Wikipedia contributors 2019) is a deck building
card game for 2-4 players. While there are some previous re-
search on building an AI for this game(Fynbo 2010)(Tollisen
et al. 2015), none of those uses deep reinforcement learning as
the approach. This problem is interesting for deep reinforce-
ment learning in many aspects, including:

• This game is suitable for reinforcement learning be-
cause it involves sequential decision making and long
term planning. For human experts, a typical game
length is 10-20 turns, with 2-5 sequential decisions to
make each turn.

• Deep learning is useful to build a Q-function for a given
game state and action. The game state is complicated,
with 17 types of cards, 10 cards of each type, and each
card of a type can be in one of 9 different piles. This
results in approximately (C19

9 )17 game states plus a few
in-game actions.

• This is one of the favorite board games of both authors.

A few challenges of this project includes:

• Stochastic nature of this game. This card game involves
shuffling cards, so outcomes of a given action is not
deterministic.

• Dynamic action set. At the buy phase of different
rounds, the available cards are different depending on
the number of coins that the player has.

2. DATASET

For this project, we decide to limit the scope of cards to 12
action cards that are chosen from the base set plus the intrigue
expansion and to fix the number of players to 2. Our dataset
comes from only AI generated match history. The 12 action
cards we chose are: village, cellar, smithy, festival, market,
laboratory, chapel, warehouse, council room, militia, moat,
and witch. The effects of the cards can be found on Domin-
ionStrategy Wiki (Wiki contributors 2019).

There is an available python implementation of the game
(rsp 2019) available on github. We designed a deep reinforce-
ment learning framework and integrated it into the python im-
plementation.

Each turn of the game Dominion can be separated into two
phases:

• Action phase:
Play action cards that has various effect. Ex. draw
cards, trash cards, +actions, +buys, etc.

• Buy phase
Buy cards from supply piles with the available coins.

In the Action phase, the state of the game can be hard to define
for many of the action cards. Take the action card "Library"
as an example: Keep drawing until you have 7 cards in hand,
skipping any action cards you choose to. It is hard to define
a game state that is compatible with each step of the decision
process of "Library". Therefore, we decide to apply reinforce-
ment learning only on the Buy phase of the game. For the Ac-
tion phase, we design some simple heuristics to determine the
order that each action card is played and what to do for each
action card. Since the 12 cards we choose to include are rel-
atively simple, it is straightforward to hand design heuristics
for the Action phase, and it would not be too different from a
good human game play.

For the Buy phase, the game state can be reduced to the
number of actions, buys, coins, and the number of cards of
each kind in the different piles. The categories of piles include
supply pile, hand, draw pile, discard pile, in-play pile, and the
opponent’s full deck. Combining all the information above,
in RL terms, each buy decision can be described as a 117-
dimension vector s (denoting game state) and a 19-dimension
vector a (denoting which card was bought), as shown below:

s =



#actions
#buys
#coins
nsupply
nhand
ndraw

ndiscard
nin−play

nopponent


,a = nbought (1)

where np is a 19-dimension vector denoting number of each
19 cards in pile p.

The dataset is generated entirely with AI game play. In
addition to the RL agents, we also implemented a few AIs us-
ing hard-coded heuristics. The BigMoneyBot buys treasure
cards such as Silver and Gold and then buys victory cards
Province, Duchy, and Estate depending on the progress of the
game state. The SmithyBot buys action card Smithy (effect:
draw three cards) on top of the BigMoneyBot policies. The
Random bot buys cards randomly. The RandomActionBot
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buys action cards randomly but otherwise buy treasure cards
and victory cards according to the BigMoneyBot heuristics.
All the heuristics bots and RL agents play action cards the
same way according to some simple coded rules. The Big-
MoneyBot is a good baseline, the RandomActionBot per-
forms at similar level to BigMoneyBot, whereas SmithyBot
is very strong and has a respectable win rate even against good
human players.

We let the RL agents play against itself and heuristic AIs to
generate match data in tuples of (st ,at ,rt ,st+1,aopt,t+1), where
st is the game state (in Buy phase), at is the card bought, rt
is the reward of buying this card, st+1 is the next state at buy
phase, and aopt,t+1 is the card available to be bought at the t +1
state. We will describe how the reward is designed and how
to train the reinforcement learning model in section 5.1.

We mainly trained the RL bot in a environment of a mix of
SmithyBot/RandomBot/RL agent. Many RL agents trained
with this data achieved high win rate against SmithyBot but
had poor performance when the opponent buys a wider vari-
ety of cards other than Smithy. Therefore, we also tried train-
ing with a mix of SmithyBot/RandomActionBot/RL agent
where it will face opponents that play a wider variety of action
cards.

3. REINFORCEMENT LEARNING ALGORITHMS

We tried three different model-free reinforcement learning
algorithms: Monte Carlo, SARSA, and a modified deep Q
learning. The high level approach of all three algorithms
use a neural network to predict the state-action value func-
tion Q(s,a). Given a state s and action a, Q(s,a) evaluates the
value of the state-action pair (s,a), and can be understood as
the expected total reward by doing action a at state s.

3.1. Monte Carlo Reinforcement Learning
Monte Carlo learns from complete episodes of games. First,

we define the total discounted reward G(s,a).

G(st ,at) = rt +γrt+1 +γ2rt+2 + ...+γT −trT (2)

where γ is the discount factor for future rewards, T is the
terminal step of the episode, and rt is the reward at step t.

Monte Carlo aims to learn the Q-function Qπ(s,a) given a
state and an action, which is the expected discounted reward
if the agent take action a at state s, given its policy π.

Qπ(s,a) = Eπ[Gt |(st ,at) = (s,a)] (3)

We generate several episodes of game plays, recorded as
(st ,at ,rt). For each (st ,at) pair, we calculate G(st ,at) based
on the entire game episode. The update rule is simply:

Q(s,a)← Q(s,a) +α(G(s,a) − Q(s,a)) (4)

where α is the learning rate. Monte Carlo learning is an on-
policy reinforcement learning algorithms, so it is necessary to
update the training data frequently.

The policy π during evaluation is simply:

π(a|s) =
{

1, if a = argmaxa∈A Q(s,a)
0, otherwise

(5)

For training, we applied ε-greedy on top of the Q policy
for RL exploration (Eq.6). We tried both a constant ε over all
iterations and a decaying ε which approaches 0 over number

of iterations (Eq.7):

π(a|s) =
{

(1 − ε) + ε/|A|, if a = argmaxa∈A Q(s,a)
ε/|A|, otherwise

(6)

, where |A| is the number of available actions and

ε =
{
ε0, if ε-decay = False
10× ε0/Niter, if ε-decay = True

(7)

3.2. SARSA
The name SARSA stands for state-action-reward-state-

action. SARSA is also an on-policy learning algorithm. How-
ever, different from Monte Carlo, it uses bootstrapping to fit
for Q(s,a). With the training data (st ,at ,rt ,st+1,at+1), we gen-
erate the update target as follow.

Q(st ,at)← Q(st ,at) +α(rt +γQ(st+1,at+1) − Q(st ,at)) (8)

r + γQ(st+1,at+1) is the target bootstrapped from the current
value function that we want to fit for, and α is the learning
rate.

To avoid the problem of a constantly changing target, we
have two different networks, the target network that generates
the bootstrapped target r + γQ(st+1,at+1), and the prediction
network that tries to fit it. After some number of iterations,
we then set the weights of the target network to be the same
as the prediction network.

The policy π(a|s) is the same as the one described in the
Monte Carlo algorithm.

3.3. Deep Q Learning
Deep Q learning also learns from bootstrapping the current

estimate of the Q(s,a) similar to SARSA. However, instead
of simply using the r + γQ(st+1,at+1) as the target, it does a
greedy search and use r + γmaxa′∈a′opt

Q(s′,a′) as the target.
Different from the traditional Q learning algorithm, we don’t
evaluate the max over all possible actions, but just the actions
that are available in that step (the cards that are affordable and
available at that buy phase). This turns out to be essential for
the algorithm.

The update rule is the follow:

Q(s,a)← Q(s,a) +α(r +γ max
a′∈a′opt

Q(s′,a′) − Q(s,a)) (9)

where α is the learning rate, s is the current state, a is the
action, r is the reward, s′ is the next state, and a′opt is the set
of available actions in state s′. The policy π(a|s) is the same
as the one described in the Monte Carlo algorithm.

The advantage of this algorithm over the other two is that
it can potentially make use of slightly off-policy data and be
more data efficient.

3.4. Comparison of the three algorithms
We trained RL agents using the three algorithms with mul-

tiple combinations of hyperparameters. The win rate of the
various RL agents vs. SmithyBot are shown in Fig.1. We can
see that Monte Carlo Learning achieves the best performance
in both the maximum win rate and the average performance
of all agents. SARSA is able to achieve good performance
with the right hyperparameters, whereas DQL never manage
to beat SmithyBot reliably. Monte Carlo agents also con-
verges faster compared to SARSA and DQL. In the following
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sections where we investigate hyperparameters and win re-
ward design, we will focus on the results from Monte Carlo
agents.

The reason that Monte Carlo Learning and SARSA greatly
outperforms DQL might be because we mostly train on on-
policy data. It is relatively fast to generate large amount of
game data, so we are able to update the data buffer frequently.
Therefore, the advantage of data efficiency for DQL does not
matter in our case.

It seems that for Dominion two player games, each episode
of game play is not very long (20-30 turns), so the high vari-
ance of Monte Carlo Methods is not an issue. Bootstrapping
algorithms are more sensitive to different hyperparameters,
and Q(s,a) predictions can diverge if the wrong ones are cho-
sen. For the game Dominion where on-policy data are easily
generated and where game episodes do not last very long, the
simple Monte Carlo Learning is the best option.

FIG. 1.— Top: Monte Carlo, Middle: SARSA, Bottom: DQL.
Evolution of the RL agents with different hyperparameters for the three al-
gorithms. The y axis is the win rate against SmithyBot. We can see that
Monte Carlo achieves much better performance compared to the other two
bootstrapping algorithms. All the agents of Monte Carlo achieves larger than
5% win rate, whereas SARSA and DQL only works with some sets of hyper-
parameters and has a lower best performance.

4. NEURAL NETWORK DESIGN

The Q-function Q(s,a) takes 117 + 19 = 136-dimension in-
put vector and outputs one real number. We use a neural net-
work (referred to as Q-network) to represent this function.

We use the Adam optimization to train the Q-network, and
added dropout for regularization. The number of layers used
and the dropout percentage are both hyperparameters that we
explored. The structure of Q-network is shown in in Fig.2.
Based on our results (Fig.4), the function is smooth enough
that a small neural network with few layers is likely enough.

5. REWARDS AND HYPERPARAMETERS

There are different possibilities for designing the reward
r(s,a) in RL algorithm, and many different hyperparameters
to explore.

FIG. 2.— Structure of the Q-network. Input is a 136-dimensional vector
x = (s,a) and output is a real number y = Q(s,a). There are Nlayers hidden
layers with ReLU activation, where the first Nlayers − 1 are 136-dimensional
and the last hidden layer is 30-dimensional. The same dropout probability is
applied to all hidden layers during training.

5.1. Reward Design
One possibility is to use the final game outcome as the re-

ward, which can be considered as the true reward of this prob-
lem. However, this reward alone is very sparse and the agents
might not be able to learn well. The other simple option is to
use the victory points as the reward, since at the end of the
game, the player with the most victory points wins. The ad-
vantage of using victory points for reward is that even when
the win rate is 0% or 100%, the RL agents can still learn to
get more points.

In addition to the victory points or the game outcome, we
also tried a terminal reward that is proportional to the victory
points gained per turn. The motivation for this is that when
RL agents trained against RandomBot, it optimizes for get-
ting every possible victory points, which is not a good strat-
egy when playing against stronger opponents. Therefore, the
points per turn terminal reward can motivate a shorter game
and hopefully a stronger RL agent. Therefore, for the reward,
we have:

r(at ,st) =


∆Pt , if st 6= sT

∆Pt + Rw + Rp×PT/Nturn, if st = sT &win
∆Pt − Rw + Rp×PT/Nturn, if st = sT &lose

(10)

where ∆Pt is the victory points gained from buying card at ,
PT is the total victory points at the end of the game, Nturn is
the total number of turns, and Rw (win reward) and Rp (reward
points per turn) are hyperparameters.

5.2. Hyperparameters
We randomly sampled 500 combinations of hyperparameter

values from the distributions listed in Tab.1.

hyperparam category min max distribution
Nlayers network structure (Fig.2) 2 5 uniform (discrete)
Dropout regularization (Fig.2) 0.0 0.5 uniform
ε0 exploration (Eq.7) 0.1 0.01 log uniform
ε-decay exploration (Eq.7) False True Bernoulli p = 0.5
γ reward calculation (Eq.2) 0.9 0.99 (1- γ) log uniform
Rw reward design (Eq.10) 0.01 100 log uniform
Rp reward design (Eq.10) 0.01 10 log uniform

TABLE 1
FOR EACH ALGORITHM, WE PICK 100-500 RANDOM COMBINATIONS OF

HYPERPARAMETERS FROM THE DISTRIBUTION.
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To estimate the effect of random seeds and random game
plays on the RL agents performance, we run 100 RL agents
with one set of particular hyperparameters. In Fig.3, we can
see that agents with the same set of hyperparameters converge
around the 100th iteration. Therefore, we run at least 200
iterations when evaluating each set of hyperparameters.

FIG. 3.— 100 agents with the same set of hyperparameters for Monte Carlo
algorithm. We see that after 100 iterations, most agents have converged.

6. EVALUATING RESULTS

We evaluate the RL agents performance by the win rate of
the agents against baseline heuristics AI SmithyBot. Win rate
is evaluated by running 100 Dominion games and recording
the number of games the RL agent wins. We do this evaluation
at every iteration.

6.1. Investigate hyperparameters
We investigate the hyperparameters for the Monte Carlo

algorithm that achieved the best performance. 500 random
combinations of hyperparameters from Tab.1 are sampled ac-
cording to the listed distributions.

We analyzed the win rate against each hyperparameter, as
shown in Fig.4 (Nlayers and ε-decay) and Fig.5 (all other hy-
perparameters).

As shown in Fig.4, Nlayers = 2 in Q-network seems to per-
form best, although all Nlayers ∈ [1,5] performs reasonably
well.

Dropout, ε0, ε-decay, and γ does not seem to affect perfor-
mance much, as shown in Fig.4 and Fig.5.

FIG. 4.— Left: Histogram of number of agents binned by win rate against
SmithyBot for number of neural network hidden layers Nlayers. Right: his-
togram of number of agents for with and without ε-decay. We can see that
there are no strong correlation between the performance of agents with Nlayers
or ε-decay.

Hyperparameters related to reward design (Rw and Rp) are
more correlated to performance. As shown in Fig.6, it seems
that a higher Rw and a lower Rp results in best performance
in win rate. This is because a higher Rw motivates the RL
agents to win the game, whereas a higher Rp motivates the RL
agents to end the game earlier (but not necessarily winning).
However, with a small win reward Rw, Rp does seem to help

the agents learn consistently a strategy that beats SmithyBot
around 60% of the time. It seems that Rp helps the agents
learn a good strategy (60% win rate), but prohibits the agents
from learning the best strategy (80% win rate).

FIG. 5.— x: hyperparameters listed in Tab.1. y: win rate vs. SmithyBot.
We can see that there are no clear correlation of γ, ε, and Dropout with the
training performance. For win reward Rw and points per turn Rp, we can see
that there are some interesting correlations. The best performing RL agents
have larger win reward, while the agents with large Rp does not achieve high
win rate.

FIG. 6.— x: log of the win reward Rw , y: log of the points per turn reward
Rp. color: Best win rate against SmithyBot for agents.
We can see that all the agents that achieve the highest win rate have a high
win reward (Rw ' 10), and the agents with high points per turn Rp ' 2 fails
to achieve win rate larger than 70%. However, when Rw is very small, higher
Rp does help the agents to consistently achieve a slightly higher than 50%
winrate.

6.2. Training environment
For the hyperparameter and reward studies, we generate

data in an environment (env1) with equal mix of Smithy-
Bot/RandomBot/RL agent. As mentioned in section 2, when
played against human players who usually buy a wide variety
of cards, the RL agents does not react well. This is likely be-
cause it only faced strong opponents who buys Smithy or buys
the same cards as itself. Therefore, we also tried training RL
agents with env2 =SmithyBot/RandomActionBot/RL agent
in the hope that the RL agents trained this way will be more
robust when exposed to different play styles.

Many RL agents trained in env2 also managed to achieve a
> 80% win rate against the baseline SmithyBot. We picked
one agent RLRandom trained in env1 and one agent RLRandomAct
from env2 that both achieved very high win rate against
SmithyBot. Tab.2 shows the win rate of the two agents agains
SmithyBot and SmithyWitchBot. (SmithyWitchBot is an
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RLRandom RLRandomAct Smithy SmithyWitch
RLRandom 0.45 0.83 0.71
RLRandomAct 0.55 0.83 0.73
Smithy 0.17 0.17 0.39
SmithyWitch 0.29 0.27 0.61

TABLE 2
THE LEFTMOST COLUMN IS THE PLAYER, AND THE TOP ROW IS THE

OPPONENTS. THE ENTRIES SHOW THE WIN RATE OF THE PLAYER
AGAINST THE DIFFERENT OPPONENTS. MORE ROBUST STRATEGIES CAN

BE LEARNED BY FACING MORE DIVERSE OPPONENTS.

heuristic AI that buys the cards Smithy and Witch on top of
the BigMoneyBot strategy). Both agents achieve the same
win rate (83%) against the baseline SmithyBot. However,
when played against each other, RLRandomAct has a 55% win
rate against RLRandom. RLRandomAct also has a higher win rate
against SmithyWitchBot compared to RLRandom. By train-
ing against more diverse opponents, the RL agents are able
to learn more robust Q-functions while maintaining the same
high win rate against the baseline.

6.3. Human evaluation
Both authors played a few games against the best version

of AI trained with Monte Carlo Reinforcement Learning al-
gorithm. While both authors were able to beat the RL agent,
we find the AI pretty solid and would be very challenging for
less experienced human players. If limited to not buying the
card Chapel (effect: trash up to 4 cards from your hand), the
best RL agent is arguable better than the authors. It is likely
that the hard coded rules for playing Chapel is not optimal,
therefore the agents failed to learn to buy it.

In Fig.5, we see that there seems to be a barrier at win rate
60% that are only surpassed by few RL agents. From playing
against some of the RL agents with 80% or 60% win rate, it
seems that the difference is whether the RL agents learn to use
the card Witch.

7. CONCLUSIONS AND FUTURE WORK

We tried 3 different RL algorithms, namely Monte Carlo
Reinforcement Learning, SARSA, Deep Q Learning. Monte
Carlo Reinforcement Learning works best, achieving >80%
win rate against baseline SmithyBot AI in many hyperpa-
rameter combinations. SARSA and Deep Q Learning hardly
achieve >50% win rate against baseline SmithyBot AI.

Among all 7 hyperparameters we explored, those related
to reward design affects the result the most. The true reward
Rw (terminal win reward) helps achieve the best performance,
while the points per turn reward Rp helps the agents consis-
tently reach a 60% win rate but prohibits them from reaching
the top performance.

The opponent environment where we generated the data
also matter. Training against more diverse opponents help RL
agents learn a more robust strategy that react well to oppo-
nents with more diverse play styles.

For the scope of this project, we limited the game to a pre-
defined set of 12 action cards, fixed to 2 player games, and use
heuristic-based logic for playing action cards. Possible future
work includes: 1) include more action cards in AI training 2)
expand beyond 2 player game into multiplayer games 3) also
use Deep Reinforcement Learning for playing action cards.

Another interesting idea is to explore the possibility of
building an AI that can handle different sets of cards. While
this work limits the cards to 12 action cards plus the basic vic-
tory and treasure cards, in a real dominion game setup, a set
of 10 different cards are picked randomly from a large card
pool in every game. By training the RL agents with many
different combination of 10 cards, it is possible that they can
generalize and play well with a new combination of 10 cards
that they have never seen before.
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