Optimize Robots Physical Design by
Parameterization in Deep Reinforcement Learning

Peide Huang
Department of Mechanical Engineering
Stanford University
pdhuang@stanford.edu

Abstract

When designing robots, it is a common practice to decide some mechanical pa-
rameters prior to carrying out any detailed design. However, it is often difficult to
find the optimal values for those parameters. In most of reinforcement learning
tasks, the agent is learning a control policy in a fixed environment. This project
aims to enable the agent to modify some environment parameters related to its
physical configuration, i.e. the agent is able to evolve to a better version that is
more suitable for a certain task. We proposed methods to argument the reward
function to influence the direction of evolution according to our preference. We
discovered how the joint learning of policy and optimal physical configuration will
impact the learning efficiency. We also found some interesting relationship between
the learning of control policy and the evolution of the physical configuration.

1 Introduction

Doing mechanical design for robots is more than doing CAD in SolidWorks. Oftentimes it involves
many iterations of design-test-design. However, it may become a problem when the designer want
to figure out some essential mechanical properties prior to carry out any design because iterations
can be expensive and time-consuming. Those mechanical properties can be the position of center of
gravity, the stroke of actuator, etc. These properties are usually closely related to the specific task for
which the robot is designed.

Bipedal robot is a classical topic in robotics and has been studied since late 1960s [1]. Researcher
has conducted numerous studies in the physics of bipedal locomotion, designed many bipedal robot
and developed some sophisticated control algorithms for it [2]. Since late 1990s, people started to
introduce reinforcement learning to tackle this control problem [3} 4} 5]]. After 2010s, the burst of
deep learning ignited the usage of deep reinforcement learning in this field [6, (7, 18]].

In most of the deep reinforcement tasks, the objective is to learn a policy that achieve a certain task.
Usually, the agent is fixed. However, during the learning of control policy, if we allow the agent to
modify some environment parameters, the agent may evolve to a better version of itself which is
more suitable for the task. That is, our new parameters to learn is what the original network has plus
the environment parameters, such as the length and weight of legs or the hull.

2 Related work

There is a wide range of literature in evolutionary computation that focus on modelling embodied
cognition[9} 10, [11]]. Theo Jansen [12] used evolutionary computation to design physical Strandbeests

CS230: Deep Learning, Fall 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

that can walk on their own using only wind energy. In the recent reinforcement learning researches,
Agrawal et al.[13]] used CMA-ES to learn both the control policy and physical configuration of
agents. More recent work [13] proposed a method to learn both alternately. Our work is based on the
method proposed by Ha[[16]]. In this paper proposed a minor change to the rollout function of the
original framework.

def rollout(agent, env): def rollout(agent, env_params, env):
obs = env.reset () env.augment (env_params)
done = False obs = env.reset ()
cumulative_reward = 0 done = False
while not done: cumulative reward = 0
a = agent.action (obs) while not done:
obs, r, done = env.step(a) a = agent.action (obs)
cumulative reward += r obs, r, done = env.step(a)
return cumulative_ reward r = augment_reward(r, env_params)

cumulative_reward += r
return cumulative reward

Figure 1: Rollout change proposed by [[16]

3 Environment

To provide a standard tool for developing and benchmarking the performance of reinforcement
learning algorithm, OpenAI Gym library [17]] collects many test problems(environments) and those
environments have shared interface. One environment is called BipedalWalker-v2, which is a emulator
of a bipedal robot that has 2 legs and each leg has 2 joints. The robot needs to learn a policy that
applied torque on the 4 joints in order to move forward on a slightly uneven ground. This environment
has been used in some researches and some algorithms has achieved great performance. The graphical
rendering of the environment of BipedalWalker-v2 is as shown in Figure 2]

Figure 2: BipedalWalker-v2 environment

The observation space and action space is as shown below in Figure [BJ[17].

4 Methods

We used a simple two hidden layer fully connected neural network to learn the control policy. The
input space layer size is 24. The output layer size is 4. Each hidden layer has 40 perceptrons.

In order to learn a parameter vector w, we use Population-base Policy Gradient Method. w is sampled
from a probability distribution 7 (w, 6), a factored multi-variate normal distribution. The expected
cumulative reward R is defined as:

J(0) = / R(w

Use the log-likelihood trick to write the gradient of J(6) w.r.t 6 as:
Vo J(0) = Eg [R(w)Vglog m(w,0)]

Num Observation Min Max Mean
hull_angle o 2%pi 05
hull_angularVelocity -inf +inf
vel x R
vely R

hip_joint 1_angle -inf +inf

0

1

2

3

4

5 hip_joint 1_speed -inf +inf
6 knee_joint 1_angle -inf +inf

7 knee_joint 1_speed -inf +inf

8 leg 1_ground_contact flag 0 1

9 hip_joint_2_angle -inf +inf

10 hip_joint_2_speed -inf +inf - Num Name Min Max
n knee_joint_2_angle -inf +inf Hip_1 (Torque / Velocity) +1
12 knee_joint_2_speed -inf +inf

1

Knee_1 (Torque / Velocity) -1 +1
1 +1
1

0
1

13 leg_2_ground_contact flag 0 1 - 2 Hip_2 (Torque / Velocity)
3

14-23 10 lidar readings -inf +inf Knee_2 (Torque / Velocity) +1

Figure 3: Left: observation, right: action

Assuming that we have a population of N, we have parameters wl, w?, ..., W™, we can estimate the

value as:
N

1 i i
VoJ(0) =~ — E_l R(w*)Vglogm(w*, 8)
Then we can apply gradient ascent:

0« 9+04V9J(9)

We used the method described in William’s paper[18] to calculate the closed-form formulas for
calculating Vg log m(w?®, 6).

To influence the evolution of agent by modifying the reward function, we scale the rewards by a
utility factor. For example, if we want to keep the bipedal walker symmetric, i.e. the left and right leg
should be almost the same. We can calculate utility factor as shown below

Algorithm 1 Compute Reward Factor For Symmetric Legs

Require: vectors v; and v, representing the left and right leg parameters, sensitivity factor p
Ensure: reward factor f
1: function ComputeRewardFactor(vy, ve, p)
2: d <+ vy — vy
dscaled < p * L2norm(elementwiseDivision(d, v1))
f=1+10g(1/(1 + dscated)
return f

s

S Experiments and Results

In this project, our experiments were conducted with a 96-CPU virtual machine on Amazon Web
Service. We experimented with 4 ways of augmenting the reward function. As a baseline, we allow
the agent to evolve freely without imposing constraints. Then we tested 3 different augmentations:
balance(symmetric), small and tall legs. After training, the agent evolve to the configurations as
shown in Figure [l We can tell that the agent indeed evolved according to our expectation. During
our experiments, although the evolution is in the direction we expected, the same augmentation could
results in different final configurations. It means that the evolution is stochastic and subject to the
random initialization of the environment.

We plot the training process in Figure[5] From this plot, we found that adding constraints to evolution
will make the learning process less efficient compared with free evolution, although all of them
converge and solve the task in the end.

From the plot, we found that there is a long flat region at the beginning of the training process. One
of our hypothesises is that the agent is trying to find the optimal configuration before learning the
control policy. To provide more evidence to this hypothesis, in Figure [l we plot the training process

Figure 4: Final configuration: a) free evolution, b) balance, c¢) small, d) tall

Percentage of Maximum Cumulative Reward vs. Generation

= baseline(free evolution)
~—— balance
—— small
— tall

100% A

Percentage of Maximum Cumulative Reward

0% 1

T T T T T T
0 200 400 600 800 1000
generation

Figure 5: Training process comparison between different augmentations

and the evolution speed, defined as the L2 norm of the difference of body parameter vector between
generations. We observed that the evolution speed tends to decrease over time. The improvement
of cumulative reward starts to accelerate when the agent almost settles down with its physical
configurations.

6 Conclusion

In this project, we explored different reward augmentations to influence the evolution of the agent’s
configuration. We discovered that constraining the evolution make the learning process less efficient
than free evolution. We also discovered that the agent tries to evolve to a better version before it can
start to learn the optimal control policy efficiently.

For future works, we can try deeper and more sophisticated neural network architectures to accelerate
the learning process. In addition, we can also use different optimizers to update the environment
parameters to improve the stability and convergence speed. After this, we should explore the possible
generalization to tasks other than the bipedal walker.

entage of Maximum Cun

perc

um Curr

Percentage of Maximi

Fi

Free Evolution Balance Legs

0 100 200 300 400 500 600 700 0 200 400 600 800 1000

small Legs Tall Legs

100% 100%

2
3
&
o
>

Percentage of Maxi

0 200 400 600 800 1000 400 600 800 1000
Generation Generation

°
8
8

gure 6: Cumulative reward and evolution speed: a) free evolution, b) balance, c) small, d) tall

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Aaron M Dollar and Hugh Herr. Lower extremity exoskeletons and active orthoses: challenges and
state-of-the-art. IEEE Transactions on robotics, 24(1):144-158, 2008.

Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris. Feedback
control of dynamic bipedal robot locomotion. CRC press, 2018.

Hamid Benbrahim and Judy A Franklin. Biped dynamic walking using reinforcement learning. Robotics
and Autonomous Systems, 22(3-4):283-302, 1997.

Russ Tedrake, Teresa Weirui Zhang, and H Sebastian Seung. Stochastic policy gradient reinforcement
learning on a simple 3d biped. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2849-2854. IEEE, 2004.

Petar Kormushev, Barkan Ugurlu, Sylvain Calinon, Nikolaos G Tsagarakis, and Darwin G Caldwell.
Bipedal walking energy minimization by reinforcement learning with evolving policy parameterization. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 318-324. IEEE, 2011.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages 1329-1338,
2016.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic locomotion
skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics (TOG), 36(4):41,
2017.

Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de Panne. Feedback control
for cassie with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1241-1246. IEEE, 2018.

Rolf Pfeifer and Josh Bongard. How the body shapes the way we think: a new view of intelligence. MIT
press, 2006.

Karl Sims. Evolving 3d morphology and behavior by competition. Artificial life, 1(4):353-372, 1994.

[11] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 15-22. ACM, 1994.

[12] Theo Jansen. Strandbeests. Architectural Design, 78(4):22-27, 2008.

[13] Shailen Agrawal, Shuo Shen, and Michiel van de Panne. Diverse motions and character shapes for
simulated skills. /IEEE transactions on visualization and computer graphics, 20(10):1345-1355, 2014.

[14] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159-195, 2001.

[15] Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly learning to construct and
control agents using deep reinforcement learning. In 2019 International Conference on Robotics and
Automation (ICRA), pages 9798-9805. IEEE, 2019.

[16] David Ha. Reinforcement learning for improving agent design. arXiv preprint arXiv:1810.03779, 2018.

[17] A toolkit for developing and comparing reinforcement learning algorithms. https://gym.openai.com/
docs/. Accessed: 2010-09-30.

[18] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

https://gym.openai.com/docs/
https://gym.openai.com/docs/

	Introduction
	Related work
	Environment
	 Methods
	Experiments and Results
	Conclusion

