
 1

Wafer Map Failure Pattern Classification Using Deep Learning

Jie Gong (jieg@stanford.edu), Chen Lin (chenlin1@stanford.edu)

Abstract
In this study, we worked on how to automate the wafer map failure pattern classification using deep learning computer
vision methods, which is a hot topic in the semiconductor industry nowadays. We preprocessed the pre-existing public
dataset using data normalization and augmentation, explored both simplified AlexNet and simplified VGG16 model
architectures, performed hyperparameter tuning to optimize our model performance, and reported the quantitative and
qualitative results of our two models. It turns out that our simplified versions of AlexNet and VGG16 models can both
achieve high accuracy, precision and recall, with simplified VGG16 outperforming simplified AlexNet.

1. Introduction and Related Work

Wafer inspection is very important for increasing the yield of a micro/nano-fabrication process in the semiconductor
industry. Based on different kinds of detected wafer map failure patterns, it is possible to figure out the root causes of
various process issues [1-4]. The traditional visual recognition approach performed by an experienced person can be
expensive and time-consuming. Therefore, investigating how to automate the wafer map failure pattern classification
is interesting and valuable, which can remarkably enhance the wafer inspection efficiency in comparison with manual
inspection [1-4]. Novel deep learning methods are proposed in our project to accurately identify various defect patterns
on wafers. The input to our models is a normalized 1-channel wafer map image (42 × 42 × 1) with only one failure
pattern from the 8 defect types (“Scratch”, “Edge-Ring”, “Edge-Loc”, “Center”, “Random”, “Loc”, “Near-full” and
“Donut”). We then used both simplified AlexNet and simplified VGG16 models to output the predicted defect pattern
of this wafer map.

There were a great many early studies investigating wafer map failure pattern recognition (WMFPR) [5-8]. However,
because these methods are of low accuracy, they are not good enough for large-scale dataset analyses. Recently, a few
research groups have processed large-scale wafer map datasets accurately and efficiently using some novel techniques
(e.g. feature extraction [1-4] and defect clustering [2]) based on various traditional machine learning pattern
recognition algorithms (e.g. support vector machines [1-2], k-nearest neighbors [9], and decision trees [3]). In order
to further improve the accuracy and efficiency of analyzing large-scale wafer map datasets, we applied deep learning
convolutional neural network (CNN) models in our project.

2. Dataset and Features

Based on the public WM-811K(LSWMD) dataset from Kaggle [10], it consists of 811457 wafer maps with
information about the wafer map, number of dies, lot name, wafer index in each lot, training or test set label and failure
pattern type. Although this dataset has already been divided into the training and testing sets by experts, we did not
follow this existing data separation and defined our own training and test datasets. Ideally, each of the 47543 lots
should have 25 wafer maps, leading to 1157325 total wafer maps. However, in reality, some wafer maps are somehow
missing in some lots. More importantly, according to the failure type information analysis, only 25519 wafer maps
have real defect patterns, while 147431 wafers have no defect patterns (labeled “none”) and 638507 wafers have no
labels. Since currently we are only interested in wafers with real failure patterns, the vast majority of the wafer maps
have been removed and only those 25519 samples are useful to us.

One big issue for this dataset is that the dimensions of the wafer maps are not uniform. Based on the waferMap column
information (“0”, “1” and “2” represent the regions with no die, a normal die and a defective die respectively) from
the dataset, the wafer map dimensions can be extracted and turn out to be not the same size. Data normalization was
first performed via dividing this waferMap column data by 2, which converted the data type from int to float and
therefore made the resizing process possible. In order to minimize the upsizing and downsizing errors after the image
size unification, we calculated the weighted average dimensions of the 25519 wafer maps in the x and y directions
and found that the optimal dimensions should be chosen as 42 × 42 . Also, the resizing errors during data

 2

transformation can potentially serve as regularization. Figure 1 shows the wafer map comparisons before and after
resizing, which indicates that the defect pattern types are not modified after the data transformation.

The other big issue for this dataset is its highly imbalanced data distribution among the 8 failure pattern types. We
applied two data augmentation strategies to solve this data imbalance problem, namely flipping and rotating. The
image comparisons before and after data augmentation are shown in Figure 2(a), which confirms that the failure
pattern type is visually unchanged after the data augmentation.

As for the data split, two different approaches were used. Approach 1 is first performing data augmentation on the
normalized wafer maps and then dividing the resulting data into the training and test datasets based on a 7:3 ratio.
Approach 2 is first splitting the normalized wafer maps into the training and test datasets according to a 7:3 ratio and
then applying data augmentation only on the training dataset. Compared with Approach 1, Approach 2 has the
advantage of excluding the data augmentation effect from the test performance results, resulting in potentially better
evaluation of the model performance on the test dataset.

It can be seen from Figure 2(b) and Figure 2(c) that, for both Approach 1 and Approach 2, after data augmentation,
the ratio of the maximum number of images for a certain failure pattern type (“Edge-Ring” in this case) to the minimum
number of images for a particular defect pattern type (“Near-full” in this case) is less than 10. Compared with the
highly imbalanced failure pattern type distributions before data augmentation (Figure 2(b) and Figure 2(c)), the data
diversity is significantly increased, which is beneficial to the training processes.

Figure 1. Wafer map comparisons before and after image (a) upsizing or (b) downsizing.

Figure 2. (a) Wafer map comparisons as well as failure pattern type distributions using (b) Approach 1 and (c)
Approach 2 before and after data augmentation.

3. Methods
First, we built a simplified version of AlexNet CNN model [11] (Figure 3) by using the mini-batch gradient descent
and Adam optimization. The justifications of this simplification can be summarized as follows. First, our input image
size 42 × 42 × 1 is much smaller than that in original AlexNet [11]. Moreover, the image contents used for

 3

developing AlexNet are much more complex than ours2. Last, our goal is to classify only 8 defect pattern types while
AlexNet is aimed at 1000 classes2. Therefore, we reduced the kernel size and the number of filters in our simplified
AlexNet model to reduce time and computation costs.

Second, we built a simplified VGG16 CNN model [12] (Figure 4) on the basis of the mini-batch gradient descent and
Adam optimization. Compared with the original VGG16 model, the number of layers, 16, does not change. However,
the number of filters in each layer is remarkably reduced. The major reason we performed this simplification is because
it is very difficult to make the original VGG16 model converge to a global minimal. In addition, the original VGG16
requires high computational resources and its training process is slow.

Figure 3. Our simplified AlexNet model architecture.

Figure 4. Our simplified VGG16 model architecture.

4. Experiments, Results and Discussion

TensorFlow 1.13 framework was used through the whole project. During the training processes of our models, we
applied TensorBoard for neural network visualizing. As an example, Figure 5(a) and Figure 5(b) show our simplified
AlexNet and simplified VGG16 model graphs generated by TensorBaord respectively. Also, for the purpose of easy
error checking, we fixed the random seeding of data splitting, image shuffling and weight Xavier initialization.
Furthermore, to avoid data overfitting, we investigated the effects of L2 regularization and dropout regularizations.
Table 1 shows the overall training accuracy, testing accuracy and variance of our two models with and without
regularization. In our simplified AlexNet case, using Approach 1 or Approach 2 yields very similar performance
results. It can be seen from Table 1 that adding L2 regularization or dropout regularization can contribute to higher
testing accuracy and lower training accuracy for our simplified AlexNet model, which can potentially prevent
overfitting. Moreover, our simplified AlexNet model outperforms the conventional machine learning based
benchmark on Kaggle (overall training accuracy: ~80.4%; overall testing accuracy: ~79.0%) [13]. In our simplified
VGG16 case, when using Approach 1 with no regularization (Figure 5(c)), the simplified VGG16 model shows almost
perfect training accuracy (~99.8%) and pretty high testing accuracy (~92.0%), which performs better than the
simplified AlexNet model correspondingly. However, when using Approach 2 in the simplified VGG16 case (Figure
5(d)), the training process could not converge to a global minimal, resulting in accuracy close to random guessing.
Figure 5(d) shows that the training process is stuck in some local minimal even after starting a couple of epochs, with
its cost (~2) close to the initial cost (ln 8 ≈ 2.08). We attempted to change the weight initialization, learning rate,
mini-batch size and optimizer parameter but none of them worked.

 4

To see how our two models performed on each specific defect pattern class, the training and testing pattern recognition
confusion matrices were generated under various regularization and hyperparameter conditions (Figure 6(a) and
Figure 6(b) show 2 examples). It is easy to calculate the recall, precision and F1 score performance metrics based on
a confusion matrix. Figure 6(c) shows these performance metrics for our simplified VGG16 model with no
regularization as an example. As is show in Figure 6(a) and Figure 6(b), the “Loc” defect type has the lowest testing
accuracy among all the 8 failure pattern classes. The misclassification of both our models can be partly explained by
the wafer map normalization. Due to the resizing of image dimensions, the wafer maps become more blurred, which
makes the defect pattern identification more difficult.

In order to further improve the performance of our simplified AlexNet and simplified VGG16 models, we performed
the hyperparameter tuning of learning rate (0.001, 0.005 and 0.01), L2 regularization coefficient lambda (0.001, 0.01
and 0.1) and dropout regularization keep rate (0.5, 0.75 and 1) on the test dataset. We selected these hyperparameters
for tuning because we believe they are important to our model performance results. There are totally 27 tests. Due to
the space limitation, the detailed results are not listed here and only the most important trends are discussed as follows.
First, based on the dropout regularization keep rate tuning results, larger keep rate leads to lower bias and higher
variance, which is as expected. Therefore, 0.5 is chosen as the best keep rate for the dropout regularization. Figure 7
shows the scattering plot of the testing accuracy when the keep rate is kept as 0.5. It indicates that our model
performance is most sensitive to lambda. When lambda is equal to 0.001, even setting learning rate to 0.1 gives decent
results. However, if lambda equals 0.1, the testing accuracy still stays low even with a small learning rate.

Figure 5. Our (a) simplified AlexNet and (b) simplified VGG16 model graphs generated by TensorBoard, as well as
cost vs. iterations plots for our simplified VGG16 model using (c) Approach 1 with dropout regularization (keep rate
= 0.5) and (d) Approach 2 with no regularization.

Table 1. Bias and variance metrics of all the models.

 5

Figure 6. Testing normalized confusion matrices of (a) our simplified AlexNet model with L2 regularization and
dropout regularization (lambda = 0.001 and keep rate = 0.5) as well as (b) our simplified VGG16 model with dropout
regularization (keep rate = 0.5). (c) Recall, precision and F1 score performance metrics for our simplified VGG16
model with no regularization.

Figure 7. Testing accuracy results for hyperparameter tuning (keep rate = 0.5).

5. Conclusion and Future Work

In this work, we implemented simplified AlexNet and simplified VGG16 CNNs for automating wafer map defect
pattern classification with high training and testing performance. For future work, we would like to solve the non-
convergence issue of the simplified VGG16 model using Approach 2 and compare it with other cases. Another
research direction which is worth exploring is to use transfer learning to classify wafer map failure patterns. Although
VGG16 is computationally expensive, we can freeze the front layers of a pre-trained VGG16 model and only train the
last 1 or 2 layers of the neural networks.

6. Contributions

Jie Gong and Chen Lin worked together to investigate the research background, to develop, optimize and analyze the
models, as well as to document the project. Jie Gong focused more on data processing and model implementation
while Chen Lin concentrated more on literature review and project documentation.

7. GitHub Repository

https://github.com/gongjie437/CS230-Deep-Learning

8. Acknowledgements

We thank our project teaching assistant Zahra Koochak for her useful feedback on our project.

 6

References
[1] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. "Wafer map failure pattern recognition and similarity

ranking for large-scale data sets." IEEE Transactions on Semiconductor Manufacturing 28.1 (2014): 1-12.
[2] Fan, Mengying, Qin Wang, and Ben van der Waal. "Wafer defect patterns recognition based on OPTICS and

multi-label classification." 2016 IEEE Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC). IEEE, 2016.

[3] Piao, Minghao, et al. "Decision Tree Ensemble-Based Wafer Map Failure Pattern Recognition Based on Radon
Transform-Based Features." IEEE Transactions on Semiconductor Manufacturing 31.2 (2018): 250-257.

[4] Yu, Jianbo, and Xiaolei Lu. "Wafer map defect detection and recognition using joint local and nonlocal linear
discriminant analysis." IEEE Transactions on Semiconductor Manufacturing 29.1 (2015): 33-43.

[5] Wang, Chih-Hsuan. "Recognition of semiconductor defect patterns using spatial filtering and spectral
clustering." Expert Systems with Applications 34.3 (2008): 1914-1923.

[6] Yuan, Tao, Suk Joo Bae, and Jong In Park. "Bayesian spatial defect pattern recognition in semiconductor
fabrication using support vector clustering." The International Journal of Advanced Manufacturing
Technology 51.5-8 (2010): 671-683.

[7] Hwang, Jung Yoon, and Way Kuo. "Model-based clustering for integrated circuit yield enhancement." European
Journal of Operational Research 178.1 (2007): 143-153.

[8] Yuan, Tao, and Way Kuo. "A model-based clustering approach to the recognition of the spatial defect patterns
produced during semiconductor fabrication." IIE Transactions 40.2 (2007): 93-101.

[9] Kim, Byunghoon, et al. "A regularized singular value decomposition-based approach for failure pattern
classification on fail bit map in a DRAM wafer." IEEE Transactions on Semiconductor Manufacturing 28.1
(2015): 41-49.

[10] https://www.kaggle.com/qingyi/wm811k-wafer-map
[11] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional

neural networks." Advances in neural information processing systems. 2012.
[12] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014).
[13] https://www.kaggle.com/ashishpatel26/wm-811k-wafermap

