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Abstract 
In this study, we worked on how to automate the wafer map failure pattern classification using deep learning computer 
vision methods, which is a hot topic in the semiconductor industry nowadays. We preprocessed the pre-existing public 
dataset using data normalization and augmentation, explored both simplified AlexNet and simplified VGG16 model 
architectures, performed hyperparameter tuning to optimize our model performance, and reported the quantitative and 
qualitative results of our two models. It turns out that our simplified versions of AlexNet and VGG16 models can both 
achieve high accuracy, precision and recall, with simplified VGG16 outperforming simplified AlexNet. 

 
1. Introduction and Related Work 
 
Wafer inspection is very important for increasing the yield of a micro/nano-fabrication process in the semiconductor 
industry. Based on different kinds of detected wafer map failure patterns, it is possible to figure out the root causes of 
various process issues [1-4]. The traditional visual recognition approach performed by an experienced person can be 
expensive and time-consuming. Therefore, investigating how to automate the wafer map failure pattern classification 
is interesting and valuable, which can remarkably enhance the wafer inspection efficiency in comparison with manual 
inspection [1-4]. Novel deep learning methods are proposed in our project to accurately identify various defect patterns 
on wafers. The input to our models is a normalized 1-channel wafer map image (42 × 42 × 1) with only one failure 
pattern from the 8 defect types (“Scratch”, “Edge-Ring”, “Edge-Loc”, “Center”, “Random”, “Loc”, “Near-full” and 
“Donut”). We then used both simplified AlexNet and simplified VGG16 models to output the predicted defect pattern 
of this wafer map. 
 
There were a great many early studies investigating wafer map failure pattern recognition (WMFPR) [5-8]. However, 
because these methods are of low accuracy, they are not good enough for large-scale dataset analyses. Recently, a few 
research groups have processed large-scale wafer map datasets accurately and efficiently using some novel techniques 
(e.g. feature extraction [1-4] and defect clustering [2]) based on various traditional machine learning pattern 
recognition algorithms (e.g. support vector machines [1-2], k-nearest neighbors [9], and decision trees [3]). In order 
to further improve the accuracy and efficiency of analyzing large-scale wafer map datasets, we applied deep learning 
convolutional neural network (CNN) models in our project. 
 
2. Dataset and Features 
 
Based on the public WM-811K(LSWMD) dataset from Kaggle [10], it consists of 811457 wafer maps with 
information about the wafer map, number of dies, lot name, wafer index in each lot, training or test set label and failure 
pattern type. Although this dataset has already been divided into the training and testing sets by experts, we did not 
follow this existing data separation and defined our own training and test datasets. Ideally, each of the 47543 lots 
should have 25 wafer maps, leading to 1157325 total wafer maps. However, in reality, some wafer maps are somehow 
missing in some lots. More importantly, according to the failure type information analysis, only 25519 wafer maps 
have real defect patterns, while 147431 wafers have no defect patterns (labeled “none”) and 638507 wafers have no 
labels. Since currently we are only interested in wafers with real failure patterns, the vast majority of the wafer maps 
have been removed and only those 25519 samples are useful to us. 
 
One big issue for this dataset is that the dimensions of the wafer maps are not uniform. Based on the waferMap column 
information (“0”, “1” and “2” represent the regions with no die, a normal die and a defective die respectively) from 
the dataset, the wafer map dimensions can be extracted and turn out to be not the same size. Data normalization was 
first performed via dividing this waferMap column data by 2, which converted the data type from int to float and 
therefore made the resizing process possible. In order to minimize the upsizing and downsizing errors after the image 
size unification, we calculated the weighted average dimensions of the 25519 wafer maps in the x and y directions 
and found that the optimal dimensions should be chosen as 42 × 42 . Also, the resizing errors during data 
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transformation can potentially serve as regularization. Figure 1 shows the wafer map comparisons before and after 
resizing, which indicates that the defect pattern types are not modified after the data transformation. 
 
The other big issue for this dataset is its highly imbalanced data distribution among the 8 failure pattern types. We 
applied two data augmentation strategies to solve this data imbalance problem, namely flipping and rotating. The 
image comparisons before and after data augmentation are shown in Figure 2(a), which confirms that the failure 
pattern type is visually unchanged after the data augmentation. 
 
As for the data split, two different approaches were used. Approach 1 is first performing data augmentation on the 
normalized wafer maps and then dividing the resulting data into the training and test datasets based on a 7:3 ratio. 
Approach 2 is first splitting the normalized wafer maps into the training and test datasets according to a 7:3 ratio and 
then applying data augmentation only on the training dataset. Compared with Approach 1, Approach 2 has the 
advantage of excluding the data augmentation effect from the test performance results, resulting in potentially better 
evaluation of the model performance on the test dataset. 
 
It can be seen from Figure 2(b) and Figure 2(c) that, for both Approach 1 and Approach 2, after data augmentation, 
the ratio of the maximum number of images for a certain failure pattern type (“Edge-Ring” in this case) to the minimum 
number of images for a particular defect pattern type (“Near-full” in this case) is less than 10. Compared with the 
highly imbalanced failure pattern type distributions before data augmentation (Figure 2(b) and Figure 2(c)), the data 
diversity is significantly increased, which is beneficial to the training processes. 
 

 
Figure 1. Wafer map comparisons before and after image (a) upsizing or (b) downsizing. 

 

 
Figure 2. (a) Wafer map comparisons as well as failure pattern type distributions using (b) Approach 1 and (c) 
Approach 2 before and after data augmentation. 
 
3. Methods 
First, we built a simplified version of AlexNet CNN model [11] (Figure 3) by using the mini-batch gradient descent 
and Adam optimization. The justifications of this simplification can be summarized as follows. First, our input image 
size 42 × 42 × 1  is much smaller than that in original AlexNet [11]. Moreover, the image contents used for 
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developing AlexNet are much more complex than ours2. Last, our goal is to classify only 8 defect pattern types while 
AlexNet is aimed at 1000 classes2. Therefore, we reduced the kernel size and the number of filters in our simplified 
AlexNet model to reduce time and computation costs. 
 
Second, we built a simplified VGG16 CNN model [12] (Figure 4) on the basis of the mini-batch gradient descent and 
Adam optimization. Compared with the original VGG16 model, the number of layers, 16,  does not change. However, 
the number of filters in each layer is remarkably reduced. The major reason we performed this simplification is because 
it is very difficult to make the original VGG16 model converge to a global minimal. In addition, the original VGG16 
requires high computational resources and its training process is slow. 
 

 
Figure 3. Our simplified AlexNet model architecture. 

 

 
Figure 4. Our simplified VGG16 model architecture. 

 
4. Experiments, Results and Discussion 
 
TensorFlow 1.13 framework was used through the whole project. During the training processes of our models, we 
applied TensorBoard for neural network visualizing. As an example, Figure 5(a) and Figure 5(b) show our simplified 
AlexNet and simplified VGG16 model graphs generated by TensorBaord respectively. Also, for the purpose of easy 
error checking, we fixed the random seeding of data splitting, image shuffling and weight Xavier initialization. 
Furthermore, to avoid data overfitting, we investigated the effects of L2 regularization and dropout regularizations. 
Table 1 shows the overall training accuracy, testing accuracy and variance of our two models with and without 
regularization. In our simplified AlexNet case, using Approach 1 or Approach 2 yields very similar performance 
results. It can be seen from Table 1 that adding L2 regularization or dropout regularization can contribute to higher 
testing accuracy and lower training accuracy for our simplified AlexNet model, which can potentially prevent 
overfitting. Moreover, our simplified AlexNet model outperforms the conventional machine learning based 
benchmark on Kaggle (overall training accuracy: ~80.4%; overall testing accuracy: ~79.0%) [13]. In our simplified 
VGG16 case, when using Approach 1 with no regularization (Figure 5(c)), the simplified VGG16 model shows almost 
perfect training accuracy (~99.8%) and pretty high testing accuracy (~92.0%), which performs better than the 
simplified AlexNet model correspondingly. However, when using Approach 2 in the simplified VGG16 case (Figure 
5(d)), the training process could not converge to a global minimal, resulting in accuracy close to random guessing. 
Figure 5(d) shows that the training process is stuck in some local minimal even after starting a couple of epochs, with 
its cost (~2) close to the initial cost (ln 8 ≈ 2.08). We attempted to change the weight initialization, learning rate, 
mini-batch size and optimizer parameter but none of them worked. 
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To see how our two models performed on each specific defect pattern class, the training and testing pattern recognition 
confusion matrices were generated under various regularization and hyperparameter conditions (Figure 6(a) and 
Figure 6(b) show 2 examples). It is easy to calculate the recall, precision and F1 score performance metrics based on 
a confusion matrix. Figure 6(c) shows these performance metrics for our simplified VGG16 model with no 
regularization as an example. As is show in Figure 6(a) and Figure 6(b), the “Loc” defect type has the lowest testing 
accuracy among all the 8 failure pattern classes. The misclassification of both our models can be partly explained by 
the wafer map normalization. Due to the resizing of image dimensions, the wafer maps become more blurred, which 
makes the defect pattern identification more difficult. 
 
In order to further improve the performance of our simplified AlexNet and simplified VGG16 models, we performed 
the hyperparameter tuning of learning rate (0.001, 0.005 and 0.01), L2 regularization coefficient lambda (0.001, 0.01 
and 0.1) and dropout regularization keep rate (0.5, 0.75 and 1) on the test dataset. We selected these hyperparameters 
for tuning because we believe they are important to our model performance results. There are totally 27 tests. Due to 
the space limitation, the detailed results are not listed here and only the most important trends are discussed as follows. 
First, based on the dropout regularization keep rate tuning results, larger keep rate leads to lower bias and higher 
variance, which is as expected. Therefore, 0.5 is chosen as the best keep rate for the dropout regularization. Figure 7 
shows the scattering plot of the testing accuracy when the keep rate is kept as 0.5. It indicates that our model 
performance is most sensitive to lambda. When lambda is equal to 0.001, even setting learning rate to 0.1 gives decent 
results. However, if lambda equals 0.1, the testing accuracy still stays low even with a small learning rate. 
 

 
Figure 5. Our (a) simplified AlexNet and (b) simplified VGG16 model graphs generated by TensorBoard, as well as 
cost vs. iterations plots for our simplified VGG16 model using (c) Approach 1 with dropout regularization (keep rate 
= 0.5) and (d) Approach 2 with no regularization. 

 
Table 1. Bias and variance metrics of all the models. 
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Figure 6. Testing normalized confusion matrices of (a) our simplified AlexNet model with L2 regularization and 
dropout regularization (lambda = 0.001 and keep rate = 0.5) as well as (b) our simplified VGG16 model with dropout 
regularization (keep rate = 0.5). (c) Recall, precision and F1 score performance metrics for our simplified VGG16 
model with no regularization. 

 

 
Figure 7. Testing accuracy results for hyperparameter tuning (keep rate = 0.5). 

 
5. Conclusion and Future Work 
 
In this work, we implemented simplified AlexNet and simplified VGG16 CNNs for automating wafer map defect 
pattern classification with high training and testing performance. For future work, we would like to solve the non-
convergence issue of the simplified VGG16 model using Approach 2 and compare it with other cases. Another 
research direction which is worth exploring is to use transfer learning to classify wafer map failure patterns. Although 
VGG16 is computationally expensive, we can freeze the front layers of a pre-trained VGG16 model and only train the 
last 1 or 2 layers of the neural networks. 
 
6. Contributions 
 
Jie Gong and Chen Lin worked together to investigate the research background, to develop, optimize and analyze the 
models, as well as to document the project. Jie Gong focused more on data processing and model implementation 
while Chen Lin concentrated more on literature review and project documentation. 
 
7. GitHub Repository 
 
https://github.com/gongjie437/CS230-Deep-Learning 
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