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Abstract—Large scale planned outages by utilities to prevent 

wildfires are based on a lack of understanding of the specific 

causes of utility-triggered wildfire. We proposed to look at the 

ability of neural networks to predict utility-caused wildfires based 

on publicly available drought maps. We used CNNs and Xception 

to encore the maps and CPUC publicly available utility-caused 

fires database. We found that the models were unable to predict 

accurately the likelihood of such fires or to find any link between 

the maps and fires, due to either lack of data or lack of correlation 

between drought conditions and utility-caused fires. We propose 

some next steps to continue to investigate the topics.  

I. INTRODUCTION  

In 2019, PG&E planned several outages to prevent electric 

equipment from sparking wildfires At one point, one peak power 

outage reached 800,000 customers.[1] This outage affected 

more than 2 million people in California. A conservative cost 

estimate of the outage is at least a 2 billion dollar bill for the 

state.[2] In the last four years, wildfires caused by utilities have 

become an increasing issue in California. The three main 

utilities caused over 2000 wildfires between 2014 and 2017[3], 

and hundreds more in 2018. The causes of utility-triggered 

wildfires include a nonexclusive combination wind, sparks 

triggered by utility equipment, fuel availability, accessibility of 

the area, type of vegetation, land topology, temperature, relative 

humidity, precipitation, soil moisture, time of year… Several 

research projects have already focused on the use of neural 

networks for the prediction of wildfires[4] and wildfire risk[5], 

based on soil moisture[6], GIS-based tropical forest fire risk[7] 

or wildfires caused by lightning [8].  

California has been subjected to drought conditions varying 

throughout the year, from historical drought to drought-free. 

[9]Drought conditions impact several factors like fuel 

availability, since the more rainfall there is the more vegetation 

growth is observed. Humidity, temperatures, precipitations all 

influence drought conditions. Finally soil moisture will be a 

direct result of the drought conditions as well. Therefore, we 

thought that drought conditions could be a good indicator of 

conditions leading to wildfires. Assuming that the ability of 

utilities infrastructure to spark a wildfire is independent of 

environmental conditions, we made the hypothesis that drought 

conditions should affect how many utilities fire were started.  

We set to confirm or question this hypothesis by using neural 

network to predict the probability of wildfires caused by 

electric equipment in PG&E territory based on weekly drought 

conditions.  

The significance of this work could improve the way that  

preventative outages are selected and highlights which 

environmental factors contribute the most to wildfires due to 

electric equipment.  

 

II. DATA 

A. Outage data 

California Investor-Owned Utilities are regulated by the 
California Public Utilities Commission. We accessed the data 
for PG&E as a CSV file formatted by the Los Angeles Times. 
[3] The information contained the GPS coordinate of the fire, 
start time, acrage and cause.  

B. Drought data 

We used images produced by the US Drought Monitor. 
[10]The Drought Monitor was created in 1999 and operated 
“jointly by the National Drought Mitigation Center (NDMC) at 
the University of Nebraska-Lincoln, the National Oceanic and 
Atmospheric Administration (NOAA), and the U.S. Department 
of Agriculture (USDA). The NDMC hosts the web site of the 
drought monitor and the associated data, and provides the map 
and data to NOAA, USDA and other agencies.” [10]  

Fig. 1. Example of drought image of California as of March 11, 2014 obtained 

from the US Drought Monitor[11] Extreme Drought conditions were 

present then in the Bay Area and Central California as pictured in 

marroon.  

USDM created a weekly map of the drought situation in the 
US, which is used to determine disaster situations and for 
insurance purposes. The drought is classified on a scale from 
abnormally dry (D0) to Exceptionally Dry (D4) on a scale from 
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yellow to maroon. If there is no drought then the land is shown 
as white. The maps are freely available online.  

We created an API to collect weekly maps for California and 
saved them as jpeg files. Each image resolution was 912x912, 
as seen in Fig. 1. One image in November 2016 was corrupted, 
so we reused the previous week image.  

III. ARCHITECTURE AND HYPERPARAMETERS 

A. Simple Classifier 

We first used a simple classifier the drought picture of the 
week is the input:  

 

(1) If there is a fire during the week, then the result is 
positive. If there is no fire during the week, the result is 
negative.  

(2)  If there are 3/6/10 fires or more during the week then 
the result is positive. Otherwise, the result is negative. 
(3 fires brings the amount of positive vs negative weeks 
to approx. 50%) 

The architecture of the simple classifier was as follow:  

Fig. 2. Architecture of the Convolutional Neural Network for the simple 

classifier 

B. Difference classifier 

To take into account the time evolution, instead of using the 

image as a prediction, we took the difference between two 

weeks as a prediction of the wildfire risk. In order to have the 

images as the data, we now input the difference between two 

images and compare it to the likelihood of having a fire that 

week, as represented in equation (1) and Fig.3.  

 

Input= Image [current week]- Image [previous week]     (1) 

 

 

Fig. 3. Illustration of equation (1): difference between two weekly drought 

images in January 2017  

The network architecture used Xception as a pre-trained model. 

[12] Xception was picked for its efficiency and potentially better 

generalization to other datasets. The architecture is similar to the 

one presented on Fig.5 with the exception of the last dense 

output shape being (None, 1) since this is a simple classifier. 

C. Area classifier 

In this experiment, we corrected several flaws of the two 

precedent classifiers:  

- Not leveraging as many fires since only one or three 

fires switched the results to positive 

- Not leveraging the location of the fires 

 

The fires were classified in 19 economic areas of PG&E using 

ArcGIS software as, represented on Fig. 4.  

 

 

 

Fig. 4. Fires 2014-2018 by PG&E 19 economic areas 

We represented results for each week with multi-hot encoding, 

as an array of shape (1,19), where 0 at position [i] represents no 

fire in area number i, and 1 represent a fire that week in the area 

i. For example, [0 1 0 1 0 0 0 0 0 ….0] would mean that there 

was a fire in area 1 and area 3 that week.  

We kept the previous architecture with the modification of the 

shape of the output to an array of length 19, as represented in 

Fig.5. 

 

 

 

 

 

 

 



Table I. represent the different hyperprameters. We biased the 

parameters toward speed initially to see if the model could learn 

at all. All across the models, we used the Xavier initialization 

since it is one of the preferred initialization method for CNNs 

with ReLu activation function. We used Adam optimizer to try 

to minimize noise in the convergence. 

Since we looked at classifiers, our loss function with binary 

cross-entropy. 

 

Fig. 5. Architecture of the Model for the area classifier, the architecture is 

identical to the difference classifier with the exception of the last dense 

output shape being (None,1) for the difference classifier. 

TABLE I.   

HYPERPARAMETERS AND FUNCTIONS 

 
Hyperparameters 

Simple classifier 
Difference 

classifier 

Area 

classifier 

Epochs 50 ( not all needed) 30 30 

Initialization Xavier Xavier Xavier 

Optimizer RMSprop Adam Adam 

Learning rate 0.001 0.0004 0.0004 

Regularizati

on 
n/a 

No dropout/ 

Dropout=0.5 

Dropout=

0.5 

Last 
activation 

function 

Sigmoid Sigmoid 

Sigmoid 
(tanh and 

hard 
sigmoid 

were also 

tried) 

Batch size  16 12 12 

Image size 64 128 128 

Loss 
function 

Binary cross-
entropy 

Binary cross-
entropy 

Binary 

cross-

entropy ( 
we also 

tried 

hinge) 

 

IV. RESULTS AND ANALYSIS 

The metrics used to evaluate our work is primary accuracy. 

Our goal was to see if the model was learning any insights 

while increasing accuracy.  

A. Simple Classifier 

The simple classifier failed to learn any pattern during the 

training of the model. The model would oscillate around the 

average number of positive or negative fires, whichever is the 

largest, as seen in Fig. 6. The model would predict all 1s or all 

0s. 

  

Fig. 6. Model loss and accuracy for simple classifier with threshold of 10 fires 

per week.   

There might be a lack of data for the model to learn, but we 

suspect that the additional data necessary would need to be 

massive for the model to be able to learn from a single 

California map. In other words, there is too much noice and 

other parameters at play for the California overall conditions to 

play a significant role in the presence of 1 to 10 started by 

PG&E in California in a single week.  

B. Difference Classifier 

 

Since the computation took longer, we implemented an early 

exit when the validation loss would stop decreasing. Fig.7 

shows the early exit after 8 epochs when the validation loss 

stops improving.  

The model training accuracy improves without any 

improvement on the validation accuracy. Since the average 

probability in the validation set is 80%, the model guess that 

there will be always be fire for an accuracy that seems 

artificially high. However, no additional learning has 

occurred.  

  

Fig. 7. Model loss and accuracy for the difference classifier  

We looked at the precision and recall as shown in Fig.8. 

Changing the theshold to a higher number for positive results 

improves the precision at the expense of the recall. In our case, 

recall (not missing a fire prediction) is more important so that 

would actually be detrimental to our goal, but it did help with 

the precession and hence predictions.  

 



Theshold 0.5 

 

Threshold 0.92 

 

Fig. 8. Prediction threshold and effects on precision and recall.  

 

C. Area Classifier 

 

We were hoping that the area classifier would force the model 

to learn more nuanced information. Fig. 9 shows that the 

model is learning and converging toward a solution since the 

losses are decreasing, but that the validation model accuracy is 

failing to improve. Analysis the output more in details, we 

discovered that each area had converged around the average of 

positive results for this area (Fig. 10). We then looked at each 

probability and for patterns of increase in positive results. Fig. 

11 represents this analysis. Positive weeks, when fire occurs, 

are not more likely to have an increase in probability that 

negative weeks. There are as many positive weeks above the 

median than under the median for each area.  

 

Fig. 9. Model loss and accuracy for the area classifier  

 

Fig. 10. Output analysis in Excel, color scale from green to red represent higher 

fire probability. Each area probability output converged around the 

average probability of fire for the area 

 

 

Fig. 11. Output analysis by zone in Excel. Cells in red are positive results ( fire 

week), if the font is in black then the cell value is above the median, if 

the cell font is white then the cell value is below the median for the 

area.  

D. Discussion 

 

The main issues that we faced was the lack of large-scale data 

to discern any pattern. Given the amount of noise in the data, 

the weekly drought maps did not allow the model to discern any 

pattern.  

However, given that we failed to see any amount of learning 

besides randomness does not make us confident that drought 

change do contribute to utility wildfire. Other elements like 

wind, and soil moisture more directly contribute to wildfires 

and do not seem to be correlated to the drought conditions like 

we initially thought.  

Since the amount of data was relatively small, it is not 

unreasonable to give a human look to the data and see if there 

were any patterns. However, unlike our initial intuition, the 

researchers failed to see any patterns in the maps and data 

either.  

Interestingly enough, the amount of wildfires caused by the 

utility is such that the model can reach a really high accuracy 

by assuming that each week there will be a fire caused by 

PG&E regardless of the drought conditions.  

 

E. Limitations 

The main limitations and issues of our analysis were as follow:  

(1) PG&E does not cover all of California, but the drought 

map cover the entire state. This does create a lot of 

noise in our analysis.  

(2) We took into account all types of fires, but some fires 

that were small or in urban areas may have needed to 

be excluded because they are unlikely to be drought-

dependent.  

(3) Lack of data. The maps being produced only weekly, 

which did reduce the importance of each single fire.  

(4) One single factor. While this is was a good starting 

point, we believe that other factors should have been 

taken into account to be able to predict fires. However, 

the initial lightness of the model was perfect to set 

things up initially and for fast iterations until the 

model was running.  

 



(5) Using classifier as an approximation for probabilities. 

Since sigmoid and the binary cross-entropy biais the 

model towards picking positive or negative results, it 

is not always a good approximation of probability.  

(6) Our PG&E areas were based on economic factor rather 

than climate, vegetation and geological factors which 

may  have been a better classification 
 

CONCLUSIONS AND NEXT STEPS 

 
We initially were hoping to be able to predict an increase in 

wildfire caused by utilities from drought-maps in California. We 
used the weekly drought maps produced by US Drought 
Monitor and Convolutional Neural Networks to attempt to 
predict the likelihood of utility caused wildfires Unfortunately, 
the problem is more complex than drought-only. CNNs seemed 
to be able to handle the data well, but unable to detect any 
insights. Because of the limited data, it is difficult to know if the 
lack of results meant that we needed additional data or that the 
drought was not a significant enough factor. Issues affecting 

utilities tend to be multi-factorial, extremely noisy and strongly 
affected by human decisions which may change during a data 
collection timeline. Additional data would help to answer this 
question. However, at the moment, we believe that other 
avenues might be more fruitful than trying to gather additional 
data.  

The next steps that we propose are as follow:  

(1) Our next steps would have been to explore LSTMs as a 
way to capture temporal variations of the drought and 
see if this helped the predictions 

(2) Treating the problem more as a segmentation than a 
classification, which was a flawed approach and would 
capture spatial data much better. 

(3) Adding additional data, like soil moisture or wind.  
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