
Neural Network Structure for Traffic Forecasting

William Zhuk

December 2019

1 Introduction

Traffic prediction is a long-standing and impor-
tant field both customer-facing industry (Maps
& Guidance Software) as well as control appli-
cations (Intelligent Transportation Systems, ab-
breviated in literature as ITS). The task is to use
current-time and historical data to predict fu-
ture traffic, which then is used to re-route users
or alter controls like lights and freeway entrance
regulators.

Historically, moving-average (ARIMA vari-
ants) and statistical model driven approaches
have been leaders in this area. Today, the large
amount of public data from many traffic systems
have brought data driven Machine Learning ap-
proaches to the forefront: LSTMs, node embed-
dings, and spectral graph decompositions play a
major role in many algorithms.

Even more recently, Graph Convolutional
Networks have become a large part of learn-
ing tasks that have easily accessible information
graphs. These new approaches use a combina-
tion of LSTMs and graph convolutions to encode
both temporal and spatial features to help with
prediction.

In this project, we investigate the usage
of LSTM cells within convolutions, and how
much expressive power is gained by this ap-
proach instead of using the graph convolutions
and LSTMs in sequence. Future work can ex-
pand on larger time horizon predictions, the dif-
ference in methods on larger datasets, and po-
tential deeper enhancements to in-convolution
LSTM-cells.

2 Related Work

2.1 Graph Convolutions

Graph convolutions have been introduced to
many problem areas lately to allow for the appli-
cation of many convolutional techniques learned
in image processing into graph-based problems.
Today, there are many different convolutions be-
ing used, and in this paper, I have made use of
the ”vanilla” GCN, GAT [5], and GIN [3] convo-
lutions that are baked into pytorch-geometric.

The difference between these is the function
per convolution that applies post-aggregation to
generate the outputs before convolutions hap-
pen again. GCNs hold a single set of weights,
GATs have both weights and an attention mech-
anism to increase expressiveness, and GINs have
small feed-forward neural networks as universal
approximators within the convolutions.

2.2 Traffic Graph Convolution

The TGC framework I am using was shown
in Cui’s paper [2], which also showed its rel-
ative performance to previous models on their
datasets. This model was centered around a
novel Free Flow Matrix, which calculated which
stations were within range of causality for traffic
based on traffic limits.

FFRij =

{
1, S∆t− Distij ≥ 0

0, otherwise
(1)

where S is the speed of traffic flow, and ∆t is
the amount of time to look at the network. This
mask allows for more selective convolutions that
are guaranteed to not lose any precision for in-
fluences on the road that move below a certain
speed. They then combine this with the graph’s
modified (to include self edges) adjacency ma-
trix

Ã = A + I (2)

Ãk = min((Ã)k, 1) (3)

1



Figure 1: Cui’s TGC-LSTM Model [2]

for a certain number k steps, and finally multi-
ply the end result by weights according to dis-
tance. The operation can be seen in the left
panel of Figure 1, using these results to select
for and weight edges in the graph convolution
operation.

This paper has the graph convolution before
the LSTM cell, with the convolution’s output
for every time step as the input for LSTM cells.
The exact methods for implementing this are
reliant on the small size of the graph (the loop
dataset used is 323 detectors total), and are im-
plemented by hand with matrix operations.

2.3 T-GCN

A similar model is found in the T-GCN pa-
per [4]. This model was tested on many pre-
diction horizons, proving stable on longer hori-
zons. This paper uses the adjacency matrix
and stacked convolutions to create a topologi-
cally expressive model. Instead of looking at the
road network and adding edges for every sen-
sor that can influence another sensor within a
certain time period (Cui’s method above), the
method here uses repeated convolutions on the
original adjacency graph, bringing more distant
node information after every convolution.

The paper also went into some depth about
the model’s power against Gaussian and Pois-
son noise the training distribution, showing that
a model made via a series of convolutions that
feed into an LSTM is robust under most real-
world circumstances.

3 Dataset

Figure 2: Loop Dataset

The dataset used for this paper is LOOP, a
set of time-series speed data from road installed
metal loop detectors in Seattle. The detectors
are located almost entirely on four connected
freeways (I-5, I-405, I-90, and SR-520). This
has data for average speeds across 5 minute seg-
ments for a year, measured at 323 sensor sta-
tions.

The benefits of the Loop dataset is that all
sensors are very close to equivalent, and will
have similar noise profiles to each other. Since
the area covered is also relatively small, many
external factors like weather will apply to all
nodes in the dataset roughly uniformly.

The downsides to the dataset is the lack of
extra features beyond just average speeds, and
the lack of positional data about the sensors.
The dataset already has free-flow-matrices pro-
vided that used the distances to calculate which
nodes are reachable within certain time frames,
but a dataset with real distances would be much
more powerful.

Despite the lack of distances, since the
data has loop detectors listed by their highway

2



and mile-marker, some information can be re-
extracted. When doing so, it became apparent
that the FFR matrices provided are not correct.
Locations with very similar mile counts on the
same highway in the same direction frequently
had no connections, and adding back those con-
nections gave large differences in the number of
edges in the array. To counteract this, I cre-
ated some FFR matrices manually using some
approximations for road intersections and tested
the different possible matrices as a hyperparam-
eter.

4 Free Flow Matrix

One of the main defining factors of Cui’s TGC
networks is the Free-Flow Matrix. This can in-
fluence the ”neighborhoods”, or equivalently the
convolutional filter size used by the graph convo-
lutional algorithm. Since traffic is a real-world
phenomenon, free-flow matrices allow us to im-
pose the physical limits on traffic propagation
into the model.

Figure 3: 2 Day Speed Snippet

In Cui’s paper, the Free Flow Matrix is set
this to the speed limit (60mph). However, when
analyzing the data speeds are usually higher
than this. The speeds over these datapoints vary
a lot, with some reaching past 100mph. Look-
ing at the LOOP dataset used in their paper,
we can see that even the averaged traffic speeds
are best upper bounded by 80 mph to be more
reasonable.

Figure 4: 60mph (default) vs 80mph (alt)

However, when using this new FFM for
model training, our performance does not move.
This hints that flow-speed of traffic may not be
the correct formulation of the speed at which ac-
tual traffic flows. After further investigation, the
bottleneck for this algorithm is the hop count
that the TGC will look at. Changing the hop
count changes model performance regardless of
selected speed, and it seems the free-flow ma-
trix plays an insignificant part in this operation.
For the custom-made model by Cui, increasing
K from gave large decreases in speed, and a large
enough number caused the model to break due
to some form of gradient exponentiation in back-
prop. Only once K was large enough could the
multiplication by the FFR matrix have a con-
siderable difference.

Figure 5: Changing the FFM (s & bl) has much
less impact than changing k. The two bands
formed are k = 2, and k = 3,4

Since traffic moves slowly through the net-
work, the model still performs well regardless
of the hop-count or FFR additions due to the
underlying adjacency matrix in it.

3



LSTM

323 x 10

323 x 64

Graph Conv

ReLU

8 convs

Dense

323 x 32

323 x 1

ReLU

323 x 10

Graph Conv

ReLU

8 convs

323 x 32

LSTM

Dense

323 x 1

ReLU

323 x 10

Graph Conv
 on A^k

LSTM Cell

10 convs (seq len)

Dense

323 x 32

323 x 1

ReLU

Figure 6: Examples of Architecture Variants for LSTM placement Many of the widths of the outputs of
the LSTM and Convs are hyperparameters, as are the number of convolutions and type of convolution.

5 Train/Valid/Test Split

Cui’s original paper with the TGC-LSTM model
used an interesting splitting technique, where
every ordered sequence of input generated data
was created, shuffled, and then given to each set.
This surprised me, as it meant that valid and
test data had many sequence entries that over-
lap with train data, due to the random shuffling.

Train Test

60

58 58

54 54

57 57

53 53

51 51

40 40

38 38

44 44

50 50

54

Figure 7: One example each from a hypotheti-
cal train and test set, with 90% of the sequence
data overlapping.

After changing the split to be truly sepa-
rate, and re-running existing models alongside
my own, the difference was minor (a very small
increase in valid/test data error). It seems that
LSTMs did not overfit to the data, probably be-
cause of their sensitivity to the first input, which
was always different in the three sets regardless
of method.

This being said, all of my data comes from a
train distribution on the first 70% of the times-
tamps, validation on next 20%, and test on the
last 10%. This makes sure that none of the
model is trained on data pulled form the vali-
dation or test set.

6 Comparison Models

The results seen from Cui’s paper are custom-
made and tailored to a small 323 node graph.
However, to use this technique on larger graphs,
pytorch’s geometric framework [1] can save
heavily on memory and computation cost. It
will also serve as a way to validate the results in
a meaningful comparison.

There are also some existing GNN convolu-
tion types within pytorch geometric that can be
applied to this problem to validate that the need
for an LSTM cell during repeated convolutions
is necessary. To do this, I tested different con-
volutions that featured LSTMs either before or
after in the network architecture.

The unfortunate downside to using pytorch-
geometric was that for this small graph, the lack
of graph batching slowed down the computa-
tion compared to the existing matrix-based cus-
tom solutions. Extensions to these methods that
would flatten out both by graph batch and by
nodes in the graph, preserving order, and un-
flatten afterwards would help with speedup.

4



7 Hyperparameter Search

Once I had my own model for graph convolu-
tions, I started hyperparameter search on the
new structures to see how closely I could ap-
proximate the existing methods. This was done
on both GAT models and the new custom con-
volution model. The following is an example of
the results for a search on the custom model.

Figure 8: Custom Convolution Hyperparame-
ter Search Results. Given the number of hyper-
params, the associated features are not shown
for space concerns and instead we just see re-
sults.

After the search, it became clear that the
best models in each of the categories were per-
forming roughly equivalently on the data. This
means that a series approach: using LSTMs
to capture the sequential information, and then
spreading that around through graph convolu-
tions, had roughly the same power and holding
the LSTM inside of the convolutional operator.

0.0006

0.0008

0.001

0.002

0.004

GAN Custom

GAN vs Custom Losses

Figure 9: Losses of best of GAN and best Cus-
tom.

However, it is important to point out that
the sudden spikes in some epochs during the se-
ries approach suggests it may be more brittle,
especially since this is reflected in other hyper-
parameter values that perform well. This may
be interesting to look into, as perhaps my im-
plementation has some oversight.

8 Conclusion

Neural Networks built on top of both Graph
Convolutions and Recurrent Networks are cur-
rently the best systems for short-term traffic
prediction. The results found on the LOOP
dataset found little to no difference in the effec-
tiveness of similar networks that re-order when
the spatial and temporal data intermingle. Net-
works with an LSTM after the graph convolu-
tions performed equally well as networks that
had LSTMs before the graph convolutions, and
again equally with networks that had LSTM
cells within the convolutions.

Equally surprising was that using convolu-
tions on the edge matrix (A) versus the FFR-
based matrices (Ak

⊗
FFR) produced little dif-

ference when there were enough convolutions in
the single-neighbor networks. It provides one
extra point of evidence that repeated neighbor-
based convolving is good at expressing topolog-
ical features of graphs.

5



9 Code

The code is located at https://bitbucket.org/williamzhuk/wz-final-project-2019/src/master/
The original library was made by Zhiyong Cui, at https://github.com/zhiyongc/Graph Convolutional LSTM
There are modifications throughout the Code V2 library, but to make it more manageable for both
myself and the reader, you may ignore changes there and instead move into more recent Code V3
library that I have built. I have made many changes throughout, but Cui’s code can still be found
(somewhat edited) in the model training file, in the models file above the newer convolutional models,
and in the dataset preparation file.

References

[1] pytorch geometric. https://pytorch-geometric.readthedocs.io.

[2] Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. High-order graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and fore-
casting. arXiv preprint arXiv:1802.07007, 2018.

[3] Jure Leskovec Stefanie Jegelka Keyulu Xu, Weihua Hu. How powerful are graph neural networks?
2018.

[4] Chao Zhang Yu Liu Pu Wang Tao Lin Min Deng Haifeng Li Ling Zhao, Yujiao Song. T-gcn:
A temporal graph convolutionalnetwork for traffic prediction. IEEE Transactions on Intelligent
Transportation Systems-2019, 2018.

[5] Arantxa Casanova Adriana Romero Pietro Liò Yoshua Bengio Petar Veličković, Guillem Cucurull.
Graph attention networks. ICLR 2018, 2017.

6

https://bitbucket.org/williamzhuk/wz-final-project-2019/src/master/
https://github.com/zhiyongc/Graph_Convolutional_LSTM
https://pytorch-geometric.readthedocs.io

	Introduction
	Related Work
	Graph Convolutions
	Traffic Graph Convolution
	T-GCN

	Dataset
	Free Flow Matrix
	Train/Valid/Test Split
	Comparison Models
	Hyperparameter Search
	Conclusion
	Code

