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Abstract

Chest x-rays are one of the most widely used radiological examinations for diag-
nosing and detecting various thoracic diseases. Developing a tool that can help
radiologists achieve more accurate diagnoses could have tremendous benefits for
under-resourced hospitals and clinics. In this paper, we present various deep learn-
ing models trained to detect for the presence of 14 different observations from
both lateral and frontal chest x-ray scans. From the explored architectures, the
DenseNet-169 [1] model performed the best, achieving a test accurracy of 86%.

1 Introduction

Chest radiography, or chest x-ray, is one of the most commonly used medical imaging examinations
in the world. It can be used to diagnose multiple conditions such as heart failure or lung cancer, and is
often used to monitor the progression of diseases or to track patient outcome after medical treatments
[2]. X-rays are analyzed by radiologists who are highly specialized doctors trained in reading and
providing a diagnosis from radiology exams. Radiologists then communicate their findings to the
patient’s physician who decides on the next course of treatments.

Developing a tool that can help classify a variety of different conditions from chest x-rays would
provide immense support to understaffed hospitals or help physicians in clinical decision making.
This tool could even be deployed in clinics and hospitals in developing countries that do not have
trained radiologists on site. More than 150 million chest x-rays are performed in the US every year
[3], which opens the door to creating robust algorithms using deep learning networks.

In this project, we used both single and lateral chest x-ray images, and trained three different deep
learning models, DenseNet, ResNet and VGG, to automatically predict the probability or presence
of 14 different thoracic diseases previously identified from radiology reports.

2 Related work

In the past, several groups have been able to train very accurate models to solve this particular
chest x-ray classification problem. One of the first attempts was led by Wang et al. [4], who
trained four different networks AlexNet, GoogLeNet, VGGNet-16, and ResNet-50 to classify
eight common chest conditions using pre-trained models. Next, Rajpurkar et al. [5] developed a
121-layer convolutional neural network, named CheXNet, to predict the probability of 14 different
thoracic diseases as well as output a heatmap localizing the areas of the input image most indicative
of pneumonia. The group reported a higher F1 score than the radiologist average score. This
particular implementation used a DenseNet, developed by Huang et al. [6], and weights pre-trained
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on ImageNet. More recently, Irvin et al. [7] also used a DenseNet-121 model which predicted the
probability of 14 thoracic diseases based off of a single-view radiograph (either lateral or frontal,
outputting the maximum probability). This paper focused more specifically on different uncertainty
approaches, and tested whether classifying uncertain cases as positives, negatives, or allowing for
semi-supervised learning, led to better outcomes. A limitation that is common to all three papers is
that the models trained only considered one x-ray view to train and make predictions. In our project,
we were curious to see how a training dataset containing both frontal and lateral images affects the
model’s accuracy and performance. Following the footsteps of these papers, we also decided to
explore similar models, DenseNet, ResNet and VGG, using similar hyperparameters.

3 Dataset and Features

For this project, we utilized a chest radiograph dataset published by Stanford’s Machine Learning
group [8], which was collected from Stanford Hospital between October 2002 and July 2017. The
dataset consists of 223,648 chest x-rays of both front and lateral views of 65,240 patients labeled with
the presence of 14 common observations: No Finding, Enlarged Cardiomediastinum, Cardiomegaly,
Lung Lesion, Lung Opacity, Edema, Consolidation, Pneumonia, Atelectasis, Pleural Effusion, Pleural
Other, Fracture, and Support Devices. The labels for each condition can be 0 for negative, 1 for
positive, -1 for uncertain, or left blank for unmentioned.

To train our models, we first combined all of the available data into a single dataset. In some
of our models, we eliminated lateral images from the dataset to only consider frontal images, in
others we considered both frontal and lateral images. Following implementation suggested by [7],
we considered all uncertain labels (-1) as positive (1), since in application it is better to assume
more false positives that risk false negatives. Next, we randomized our dataset and divided it into
80%/10%10% training, validation and testing sets, which resulted in 152,983 training examples,
and 19,123 validation and testing examples in the models where we only considered frontal images,
and 178,918 training examples, and 22,365 validation and testing examples in the models where we
considered both frontal and lateral images. Following implementation outlined in [9], we loaded the
data using the ImageDataGenerator class and pre-processed the images by re-scaling by a factor of
(1/255) and set the target size to be 224x224 as suggested by [5]. Figure 1 below shows an example
image from our dataset.

Figure 1: Frontal (left) and lateral (right) chest radiographs from Stanford’s CheXpert dataset [8].

4 Methods

4.1 Baseline Model:

Our initial or baseline model consisted of a three-layer ConvNet in Tensorflow implemented using
minibatch (t=64) gradient descent, following the implementation learned in class. The ConvNet
consists of an initial Conv2D layer, followed by a maxpool layer, then another Conv2D layer, then
another maxpool layer, then flattened into a fully connected layer with a sigmoid activation function
at the output. Our network utilized Xavier initialization to initialize the weights, W1 and W2, of the
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two convolutional layers. The cost function minimized is the softmax cross entropy loss between the
prediction and the true label. Figure 2 below better captures the architecture of our model.

Figure 2: Baseline model architecture

4.2 Deep Models:

A Keras implementation was used to train three deep learning architectures, namely a DenseNet-169
[6], VGG-19 [10], and a ResNet-50 [11]. The VGG architecture developed by [10] is built using
only convolutional layers with 3x3 kernel size and max pooling layers of kernels 2x2 with a stride of
2. The advantage of this fixed size allows for a reduced number of trainable variables which leads to
a deeper network, faster learning and less over-fitting. However, bigger networks usually experience
the problem of vanishing gradients. In order to address this problem, [11] developed a convolutional
neural network using Residual blocks, which allow for shortcut connections between layers, resulting
in either an identify connection when the two shortcut connections have the same dimensions or
a projection connection when the dimensions differ. Along a similar vein, [6] developed a dense
convolutional network, or DenseNet, where each layer in the network is connected to every over
layer in a feed-forward fashion. Traditional neural networks with L layers have L connections,
but DenseNets allow for L(L+1)

2 direct connections between layers. This dense block allows each
layer to share its feature-maps as inputs into subsequent layers, and takes the feature-maps from all
preceding layer as inputs. The advantages to using this architecture are numerous: it strengthens
feature propagation, encourages feature reuse, and reduces the number of trainable parameters. In all
three models, we used Adam optimizer with the following parameters: β1 = 0.9, β2 = 0.999 and
learning rate 1 ∗ 10−4 as suggested by [7]. For each model trained, we optimized the binary cross
entropy loss,

L(X, y) = −Σyo log p(Yo = 1|X) + (1− yo) log p(Yo = 0|X) (1)

and trained for 3 epochs. In all models, we modified the last layers of the Keras pre-defined models
and included a global spatial average pooling layer, three densely connected layers with a ReLu
activation, and finally a logistics layer with 14 outputs using a sigmoid activation to output the
probability of the 14 different thoracic diseases. Figure 3 below is a visual schematic of our deep
learning models.

Figure 3: Deep model architectures, highlighting modified final layers for 14-class prediction
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5 Results

5.1 Baseline Model:

We ran our baseline model for 100 iterations, first using a learning rate of 0.009, which did not
result in good performance since the loss function did not decrease per number of iterations. After
modifying the learning rate to 9 ∗ 10−6 we achieved better results with the loss function decreasing
as seen in Figure 4. However, this initial baseline model only considered 1000 training examples
and 234 testing examples because we were limited by running the model on our computers. After
reviewing these results, we decided to take inspiration from previous implementations [5] [7] and
moved on to train deeper networks on AWS using Keras.

Figure 4: Loss curves for baseline model with lr = 0.009 (left) and lr = 9e-06 (right)

5.2 Deep Models:

The results for our three deep model architectures, VGG-19, ResNet-50, and DenseNet-169, trained
on both frontal and lateral images, are summarized below in Table 1. As we expected, the DenseNet
architecture resulted in the best performance, with an accuracy level of 86% in the frontal-only model,
and an 85% accuracy with both frontal and lateral images.

Table 1: Performance assessment of Deep Models
Model Test Accuracy Training Ex (#) Testing Ex (#)

VGG-19 (F) 0.84870 152,983 19,123
ResNet-50 (F) 0.84386 152,983 19,123
DenseNet-169 (F) 0.86099 152,983 19,123
DenseNet-169 (F&L) 0.85976 178,918 22,365

Figure 5: Precision, Recall, and F1 scores for test set on DenseNet-169 (F)
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Figure 5 above summarizes the precision, recall and F1 score for the DenseNet-169 trained on
frontal images only. The model performed better at predicting certain conditions than others. We
hypothesize that this is due to a data imbalance in the number of positive training examples for certain
thoracic diseases. We plotted the loss curve for both the training and test set for this same model,
and noticed a decreasing loss function for both datasets. We hypothesize that our model was able
to achieve high accuracy on the test set because it was usually predicting 0, or not present, on most
cases.

Figure 6: Loss curve for DenseNet-169 (F) model

6 Conclusion and Future Work

Of the model architectures explored in this paper, the DenseNet-169 had the highest performance
in terms of accuracy and F1 scores, with a 86% accuracy on the test set, exhibiting a decaying loss
function as depicted in Figure 6. The same model trained on both lateral and frontal images did not
exhibit a higher performance. Because there were a lot fewer lateral images than frontal images
(32,419 lateral images as opposed to 191,229 frontal images), we suspect that the model was unable
to learn from this smaller dataset of lateral images. Possible avenues for future work could include
only training models using frontal images, or perhaps performing data augmentation on the lateral
image dataset to create a more balanced training set. In the future, we would like to address why our
models exhibited a lower F1 score for certain categories, for example "Pleural Other" or "Enlarged
Cardiomediastinum", but high for other categories, like "Lung Opacity" or "Support Devices." Again,
we hypothesize that there were not enough data points in our training set that exhibited some of these
14 thoracic diseases. Therefore, future work could focus on data augmentation to expand the number
of positive findings for these low frequency conditions to create a more balanced dataset. Training
for more epochs, hyperparamter tuning, and using images with higher resolutions could lead to better
performance.

7 Contributions

Both team members, Lisa Ishigame and Andrea Oviedo, contributed equally to the completion of
this project. Both members worked on researching previous work, developing the models, writing
the report, as well as creating the poster. We would like to thank Dr. Ng and the rest of the CS 230
teaching team, especially our project TA Sarah Ciresi, in helping us learn the power of deep learning
and how it can be used to advance healthcare and supplement human performance to achieve better
patient outcomes.
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